Ordering in Hybrid Silicate-Oligo (*p*phenylene vinylene) Nanocomposite Thin Films by X-Ray Scattering

Hua Jin, Marina Sofos, Dipak Goswami, Leiming Li, John S. Okasinski, Keisuke Tajima, Chang-Yong Kim, Samuel I. Stupp, and Michael J. Bedzyk*

Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA

Motivation

•Characterize nm-scale structure of nano-composite selfassembled film with interesting electro-optical properties

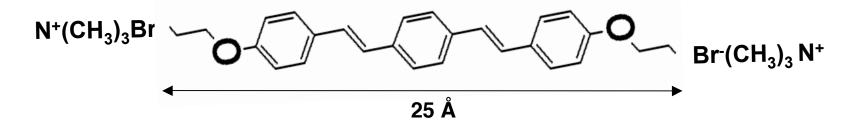
Outline

- Specimens: spin-coated Silicate-OPV thin-films on glass
- X-ray characterization tools used:

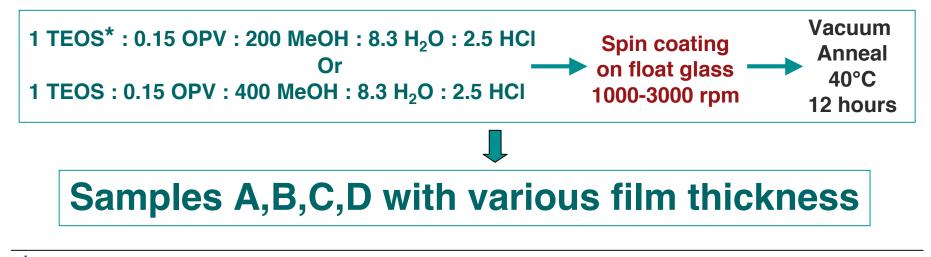
— Specular X-Ray Reflectivity (XRR) with point detector
 — Grazing incidence x-ray scattering (GIXS) with 2D
 detector

Material & Experimental

OPV molecule (Oligo *p*-phenylene vinylene):



Film Preparation <-- Spin coating on float glass mirror

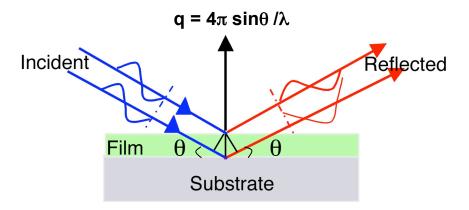


* TEOS = tetraethyl orthosilicate: Si(OEt)₄. Formula: $C_8H_{20}O_4Si$

Material & Experimental

X-Ray Reflectivity (XRR) --> e⁻ density profile along surface normal

Performed at DND-CAT 5BM-D station: E = 10.00 keV



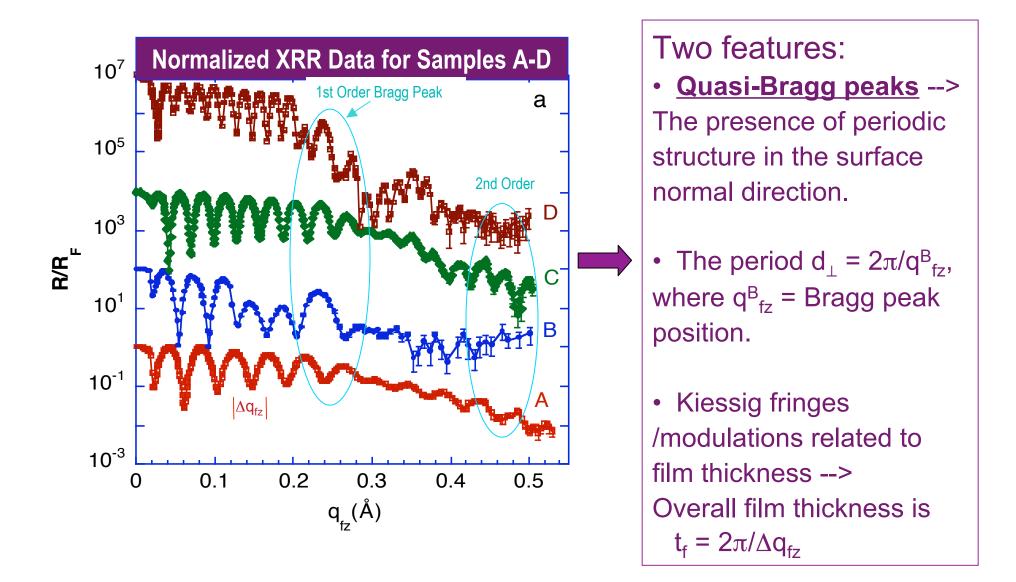
Kinematical approach:

$$\frac{R(q_{fz})}{R_F(q_{fz})} = \left| \frac{1}{\rho_{\infty}} \int_{-\infty}^{\infty} \frac{d\rho(z)}{dz} \exp(iq_{fz}z) dz \right|$$
$$q_{fz} = \sqrt{q_{fz}^2 - q_{fc}^2}$$
$$R_F(q_{fz}) = \frac{q_{fz} - \sqrt{q_{fz}^2 - q_c^2}}{q_{fz} + \sqrt{q_{fz}^2 - q_c^2}}$$

Normalized reflectivity

Film refraction correction, $q_{fc} = 0.027 \text{ Å}^{-1}$ for OPV film

Fresnel reflectivity for ideal flat surface, $q_c = 0.032 \text{ Å}^{-1}$ for float glass



XRR Analysis by Inspection of fringes and peaks

Table 1. Film thickness t _f , period d $_{\perp}$ and number of layers N calculated from the XRR results			
Sample	t _f (Å)	d _⊥ (Å)	N
Α	143	29.4	5
В	167	27.3	6
С	214	26.7	8
D	314	26.2	12

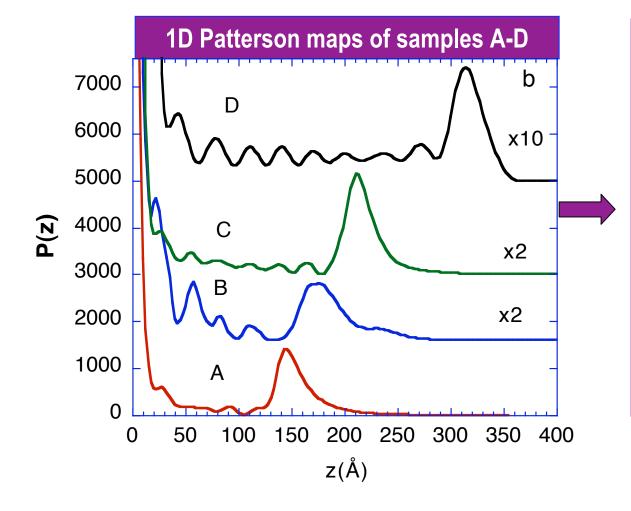
XRR Analysis by Fourier Inversion

• 1D Patterson Map P(z) = Inverse Fourier transform of the normalized reflectivity $\frac{1}{2}\int d\rho(s) d\rho(s+z) = \frac{1}{2}\int d\rho(s) d\rho(s+z)$

$$P(z) = \frac{1}{2\pi} \int |\Phi(Q)|^2 e^{-iQz} dQ = \frac{1}{\rho_{\infty}^2} \int \langle \frac{d\rho(s)}{ds} \rangle \langle \frac{d\rho(s+z)}{ds} \rangle ds$$

 Peaks in P(z) mark separation distances between any two interfaces which are sensed by a change in electron density.

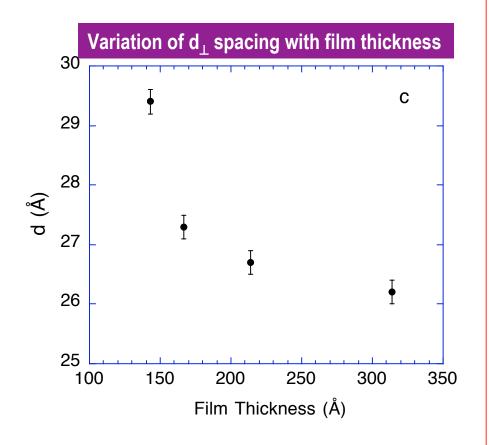
Fourier Inversion of XRR Data from OPV-Silicate Films



The large primary peak
--> Overall film thickness
The secondary maxima
--> electron density
variations inside film -->
layered ordering along
the surface normal
direction
The t and d, observed

• The t_f and d_{\perp} observed from P(z) agrees with those from XRR results

X-Ray Reflectivity Characterization



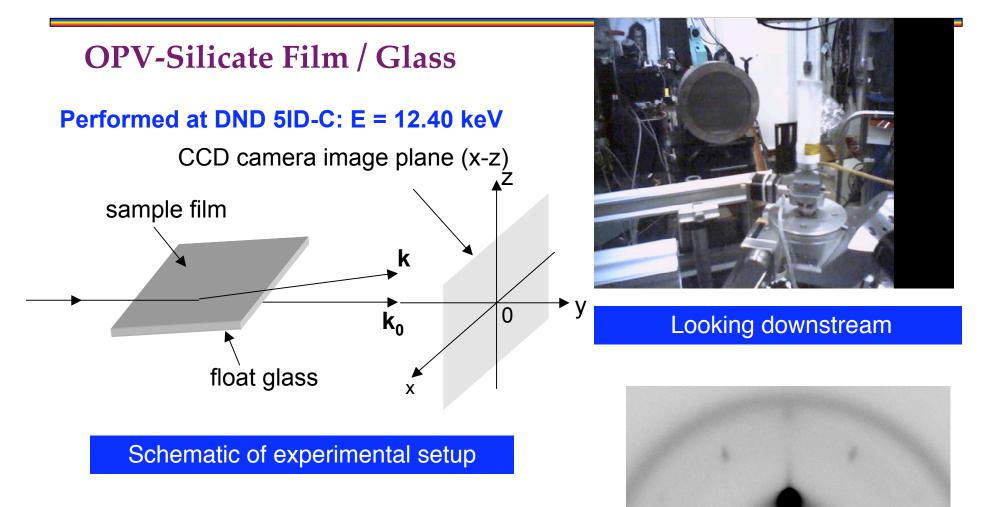
Summary of XRR:

Silicate-OPV nano-scaled films possess layered ordering along the surface normal direction

> d_{\perp} -spacing period decreased with film thickness which may be related to the lower evaporation rate of solvent hence resulting in thinner silicate layers.

 Patterson map approach is suitable for Model-Independent
 XRR data analysis for layered thin films

Grazing Incidence X-Ray Scattering (GIXS) --> 3D structure



Definition of direct space and reciprocal space geometry for GIXS CCD experiments

Directions:

y; along incident beam with wave-vector k₀
z: Vertically up
x: right hand rule, horizontal, transverse to incident beam

The CCD image plane is perpendicular to y The image plane is a distance D downstream from the sample / Diffractometer center. The incident beam intersects the image plane at x=0, z=0.

A scattered x-ray with direction defined by its wave-vector **k** passes through the mathematical xz image plane at coordinates (x,z), if the scattering angle $2\theta < \pi/2$.

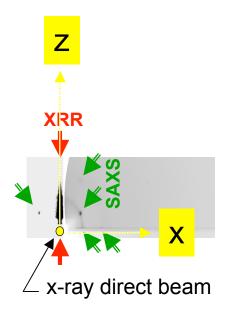
(x,z) can be conveniently transformed into angle coordinates (α,β) .

 $\begin{array}{l} \alpha = \operatorname{Atan}(x/D) : \operatorname{In-plane, horizontal, longitudinal angle} \\ \beta = \operatorname{Atan}(z/(D^2+x^2)^{1/2}) : \operatorname{Out-of-plane, elevation, latitudinal angle} \\ \end{array} \\ \begin{array}{l} \text{Scattering vector : } \mathbf{q} = \mathbf{k} - \mathbf{k}_0 \ , \quad \mathbf{q} = 4\pi \sin(^{2\theta}/_2) / \lambda \ , \\ \mathbf{q} = \mathbf{q}_x + \mathbf{q}_y + \mathbf{q}_z \ , \quad \mathbf{q}_H = \mathbf{q}_x + \mathbf{q}_y \\ \mathbf{q}_z = ^{2\pi}/_{\lambda} \sin \beta = ^{2\pi}/_{\lambda} (z/(D^2+x^2+z^2)^{1/2}) \ , \\ \mathbf{q}_H = ^{2\pi}/_{\lambda} [2(1 - \cos\alpha \ \cos\beta) - \sin^2\beta]^{1/2} \ , \\ \mathbf{q}_x = ^{2\pi}/_{\lambda} \sin\alpha \ \cos\beta \ , \quad \mathbf{q}_y = -^{2\pi}/_{\lambda} [1 - \cos\alpha \ \cos\beta] \\ \end{array} \\ \begin{array}{l} \text{Note that } \cos 2\theta = \cos\alpha \ \cos\beta \ = \ D/(D^2 + x^2 + z^2)^{1/2} \end{array}$

A Qualitative look at the GIXS 2D Pattern

GIXS geometry

X-ray (λ =1.000 Å) incident angle set near glass critical angle (~0.12°) to enhance scattering from film. Note the Yoneda line.

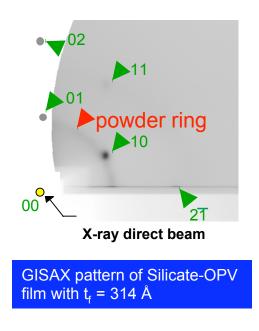


The diffraction pattern (for this case) persists independent of azimuthal rotation angle ϕ about the surface normal. This means that the film microstructure is <u>textured</u>. (The crystal domains have an out-of plane preferred orientation, but in-plane random orientation.) This texturing causes each reciprocal lattice pt. to be smeared out around a ring concentric to the z-axis. A ring intercepting the Ewald sphere causes a diffracted beam, which produces a spot on the detector plane. An ideal random powder microstructure would produce spheres in rel. space and rings on the 2D detector plane.

Specular X-ray Reflectivity (XRR) -> thickness t= 314 Å, d_z=26.2 Å, N=12

Determining the Lattice and Indexing the GIXS Peaks

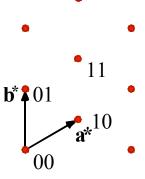
Nanometer-Scale In-Plane and Out-of-Plane Crystal Structure by GISAXS



d₀₁=26 Å from XRR d₁₀=28 Å d₁₁=15.2 Å

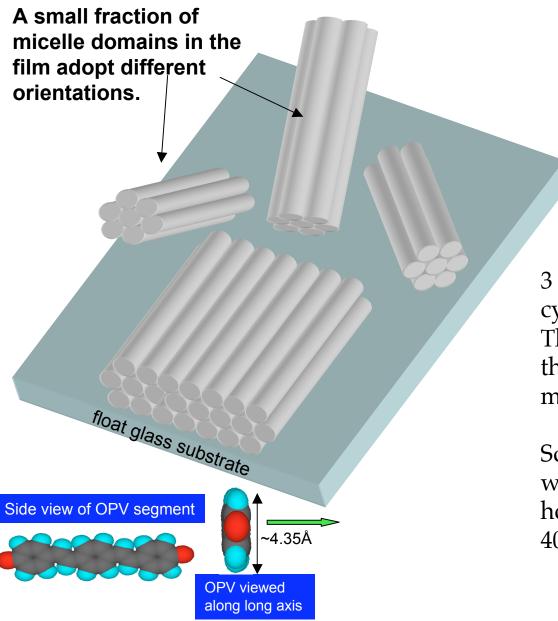
The fact that d₀₁ is slightly less than d₁₀ indicates vertically compressive strain in hexagonal stacking of cylinders. The small-angle Bragg peaks match strained 2D hexagonal packed rods laying down on surface like a pile of logs.





Powder rings correspond to randomly oriented domains with unstrained hexagonal packing.

Schematic of nm-scale OPV self-assembly from GIXS and XRR



3 nm diameter hex. packed cylindrical micelles. This diameter is slightly greater than the length of the OPV molecule.

Scherrer formula: From diff. peak widths we get the vertical and horizontal domain sizes. 20 to 40 nm