

Nanofabrication

Prof. Stephen Y. Chou NanoStructure Laboratory Department of Electrical Engineering Princeton University

NanoStructure Laboratory

Acknowledgment

- Dr. Paul Fischer
- Dr. Yun Wang
- Dr. Jay Guo
- Dr. Peter Klauss
- Dr. Jim Wang
- Dr. Longtin He
- Dr. Linhshu Kong
- Dr. Wei Zhang
- Dr. Larry Zhuang

- Dr. Gary Li
- Dr. Wei Wu
- Dr. Rich Yu
- Dr. Jian Gu
- Dr. Paru Deshpende
- Dr. Allan Chang
- Harry Gao
- All other NSL members
- Students in my ELE547 class
- Some work was performed at the University of Minnesota
- Supported in part by DARPA, ONR and ARO

Outline

• Top-Down Approaches

- -- Conventional lithography (radiation-based)
- -- Nanoimprint and nanoprint (non-radiation-based)
- -- Etching

Bottom-Up Approaches

- -- Self assembly
- -- Guided self-assembly
- -- Molecular epitaxy
- Commercial Nanoimprint tools and solutions

Because

As a device size becomes less than a fundamental physical length scale, conventional theory may no longer apply.

-- S.Y. Chou (Nanotech Report 1998)

Examples of Fundamental Length Scales and Impaccts

Nanotechnology Impacts Multi-Disciplines

Nanotechnology makes "old products" new ways and "new" products that can't be made before. It will grow *exponentially* to **multi-dimensional**, **multi-billion dollar** market in a few years.

Nanofabrication

- Nanofabrication is the vehicle to bring us to the nanotechnology dreamland of multi-dimensional and multi-trillion-dollars markets.
- Today, we do not yet have a commercial general-purpose nanomanufacturing tool.
- Without nanofabrication, nanotechnology will be a pie in the sky.

(--S.Y. Chou)

Nanofabrications

- Top-Down Approaches
 - -- Conventional lithography (radiation-based)
 - -- Nanoimprint and nanoprint (non-radiation-based)
 - -- Etching
- Bottom-Up Approaches
 - -- Self assembly
 - -- Guided self-assembly
 - -- Molecular epitaxy

8

Different Lithographies

- Radiation-based lithography
 - Photolithography (deep ultraviolet, x-ray, extreme ultraviolet)
 - Electron beam lithography (scanning, projection)
 - Ion beam lithography (scanning, projection)
 - Maskless lithographies
- Non-radiation-based lithography
 - Nanonimprint
 - Nanoprinting (ink stamping, ink jet, dip-pen lithography)

Photolithography

Whitesides, Sci. American, 2001

Physics of Radiation Based Lithography

- Theoretical resolution = $(K_1 \lambda) / (NA)$
- Theoretical Depth of Focus = (K₂ λ) / (NA)²
 (λ: wavelength, NA: numerical aperture, K₁ and K₂ are constants)
- Real resolution also depends on resist properties, mask resolution enhancement technologies, etch process

Resolution of Optical Lithography

- Optical projection imaging has been the preferred means of patterning semiconductor chips over the past 20 years
- Resolution of an optical projection system is usually expressed as

$$HP_{MIN} = k_1 \,\lambda/\sin\theta$$

 Min. Half Pitch (HP) must be greater than

 $0.25 \lambda / \sin \theta$

 Sinθ is the Numerical Aperture (NA) of the projection lens

Nanotechnology Colloquium

Progress in Optical Lithography

Finer resolution can be achieved by

- Increase of NA (0.8 @ 248 nm, 0.85 to appear @ 193 nm & 157 nm)
- Reduction of wavelength (436, 365, 248, 193, 157 nm)
- Reduction of k₁
 - Progress in mask making
 - Progress in lens making (precision optics)
 - Better photoresists
 - Better process control
 - Resolution Enhancement Techniques (RET)

Resolution Improvement by Immersion – Principle

k₁ Reduction over Time

5

Numerical Aperture Increase over Time

Nanotechnology Colloquium

Examples of EUV Lithography

Stulen, at al., IEEE J. of Quan, Elec., 1999

100 nm elbow patterns

Chapman, et al., J. Vac. Sci. Tech. B, 2001 Copyright © S.Y. Chou

Conventional Lithography Can Not Offer the Resolution, Cost, and Exposure Area Needed for Nanomanufacturing

Nanoimprint Lithography (NIL) -a Solution to Nano-manufacturing

PRINCETON UNIVERSITY

10 nm Diameter, 40nm Period Imprint Mold (After 12 Imprints)

10 nm Diameter, 40 nm Period and 60 nm Deep Holes Imprinted into PMMA

NanoStructure Laboratory PRINCETON UNIVERSITY

10 nm Diameter & 40 nm Period Ti/Au Dot Array by NIL and Lift-Off

6 nm Diameter & 65 nm Period Ti/Au Dot Array by NIL and Lift-Off

NanoStructure Laboratory PRINCETON UNIVERSITY

6 nm Half-Pitch Resist Lines by NIL

- NIL resist (cured)
- Quartz

6 nm

- Monomer (1.4 nm)
- 6 nm = 9 monomers

Austin and Chou, J of Nanotechnology 2005

Vertical Sidewall of 70 nm Resist Lines by Photo Curable/Transfer Nanoimprinting

20 nm Half-Pitch & 0.04 µm² SRAM Contact Layer by NIL

CD control measurements:

Mean: <u>21.5 nm</u>

> σ (sigma): <u>1.3 nm</u>

ITRS roadmap spec: 2016!

Austin and Chou, J of Nanotech, Aug. 2005 Nanonex NX-2000 NIL machines

Nanonex NXR-2010 resist Copyright © S.Y. Chou

Comparison of SRAM Metal Layers by 65 nm Node Photolithography & Nanoimprint lithography

