#### Nanocontacts (6 nm) for Molecular Devices













**Imprints** 





Per Cananation

Copyright © S.Y. Chou

NanoStructure Laboratory

#### **3D Complex Structure Patterning by Nanoimprint**



Copyright © S.Y. Chou

#### Low-Cost, High-Throughput Manufacturing of High Frequency Circuits By Nanoimprint Lithography





#### Preliminary Result of Alignment with Sub-20 nm (1 $\sigma$ )



31

#### Microchip Fabrication Using Nanoimprint Lithography At All Lithography Levels



## Uniform 100nm PMMA Line over 4" Wafer Imprinted by TOM



## 60 nm Channel MOSFETs on 4" wafers with All (4) Layers Fabricated by Nanoimprint Lithography (NIL)



#### Five Schemes for Nanoimprint Lithography on Non-Flat Surfaces



X. Sun, L. Zhuang, W. Zhang and S.Y. Chou, J VAC SCI TECHNOL B 16: (6) 3922-3925, 1998



## Resist on SiO<sub>2</sub> step by Imprint & lift-off & RIE





Copyright © S.Y. Chou

NanoStructure Laboratory

# **Step-and-Repeat NIL Machine**





# **300 nm Period Grating in PMMA**





Copyright © S.Y. Chou

NanoStructure Laboratory

# Deep Imprint



#### Depth: ~40 µm



NanoStructure Laboratory

## **Roller Nanoimprint**

Imprint using a cylinder mold



Imprint using a flat mold





# 30 nm Wide Resist Grating (200 nm Period) by Roller Nanoimprint (RON)

H. Tan, A. Gilbertson, S.Y. Chou, JVST B, 16 (6) 3926-3928 1998

NanoStructure Laboratory

#### Zone Plate (70 nm Min. Feature Size) by Roller Nanoimprint (RON)





NanoStructure Laboratory

## NIL Applications

#### Si nano-transistor





Chou, et al., J. Vac. Sci. Tech. B, 1997/right © S.Y. Chou

#### Photodetector

300 nm and 600 nm finger spacing





Yu, et al., App. Physics Lett., 1999

42

## **NIL Applications (continued)**

# Magnetic data storagePassive optical elementsImage: Description of the storage18 Gbit/in.²<br/>QMDImage: Description of the storageWu, et al., J. Vac. Sci. Tech. B, 1998Yu, et al., App. Physics Lett., 2000

Organic light-emitting

structures

190 nm period grating





Wang, et al., App. Physics Lett., 1999

## What is Guided Self-Assembly?

- Self-assembly refers to a physical or chemical process in which features spontaneously order.
  - Self-assembled monolayers
  - Phase-separation
  - Colloidal crystallization



- Guided self-assembly seeks to influence or control the self-assembly process to create patterns that are predetermined.
- Create patterns smaller than that which creates them
  - Demagnification

## Self Assembly

### Nature has already made perfect photonic crystals...



E. Yablonovitch, Sci. Am. 285, 46 (2001)

## **Self Assembled Monolayers**



## Di-Block Polymer Phase Separation and Self-Assembly



Fraction of each block in bulk determines the observed phase. Copyright © S.Y. Chou

## **Block-copolymer Self-Assembly**



Take advantage of structures formed by spontaneous micro-phase separation of block copolymers to form disparate regions.

Selectively remove one phase and use other to etch substrate.

Make functional block copolymer and build devices?

Harrison, Park, Chaikin, Register, and Adamson, J. Vac. Sci. Technol. B, 16, 544 – 552 (1998)

## **Examples of Self-assembly**



Self-assembly alone forms structures 10 – 50 nm, but does not give long-range order.

Need method to order the phases or guide the self-assembly.

Temperature (see movie) Electric Fields Surface Wetting Copyright © S.Y. Chou

#### Wafer Scale Alignment of 21 nm Copolymer Gratings By Shear-Force Guided Self-Assembly With A Flat Plate

#### Free Film

Without mask, cylinder phase forms randomly in a thin copolymer film.





#### Shear Force Using Flat Plate

With a flat mask, a shear force is applied to align the cylinders over entire wafer





Zhuang, Deshpande, Register, Chaikin, Chou, Advanced Materials 2004

NanoStructure Laboratory