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An Ideal Experiment for
Probing Molecular Conduction

M. C. Hersam, et al., MRS Bulletin, 29, 385 (2004).
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Real Experimental Strategies for
Probing Molecular Conduction

B. A. Mantooth, et al.,
Proc. IEEE, 91, 1785 (2003).
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The Origin of Scanning Probe Microscopy

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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The Scanning Tunneling Microscope

• STM invented by Gerd Binnig and Heinrich Rohrer in 1982
• Led to Nobel Prize in Physics, 1986

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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320 Å × 360 Å Step height ~ 12 Å

Si(111)-7×7: “Stairway to Heaven”

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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Scanning Tunneling Microscope Schematic

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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One-Dimensional Tunnel Junction

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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Tunneling Current – Approach #1

Assume metal-vacuum-metal junction, solve Schrödinger Equation:

I = tunneling current ρs = local density of states of sample
V = tip-sample voltage W = width of barrier
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Typically, φ ~ 4 eV k ~ 1 Å-1

Current decays by e2 ~ 7.4 times per Å
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Bardeen Tunneling Theory

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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Tunneling Current – Approach #2

Consider overlap of wavefunctions from either side of barrier:

Using Fermi’s Golden Rule (assuming kT << energy resolution
of the measurement),

For a free electron metal tip, ρt is constant:
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Atomic Force Microscopy

• Invented at Stanford by Binnig and Quate in 1986

• Bring tip-mounted micromachined cantilever into contact
or close proximity of the surface

• “Atomic forces” deflect cantilever and is detected with laser
deflection into a position sensitive photodiode

• Cantilever deflection is control signal for the feedback loop

• AFM can be done on “any surface” (i.e., conductive, insulating,
semiconducting, biological, etc.) in “any environment” (i.e., air,
vacuum, liquid, etc.)
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Atomic Force Microscope Cantilevers

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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Force Detection with Optical Beam Deflection

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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Fluid Cell for Atomic Force Microscopy

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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Example UHV STM Design

• Homebuilt STM in the Hersam lab at Northwestern University
• STM is a modified Lyding scanner
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Scanner Construction: Piezotubes

Outer tube:
0.650” OD
0.570” ID

0.750” Long

Inner tube:
0.375” OD
0.315” ID

0.750” Long
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Scanner Construction: Base Plug

Front View Rear View
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Scanner Construction:
Piezotubes Soldered into Base Plug
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Scanner Construction:
Course Translation Platform
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Scanner Construction:
Course Translation Platform

Soldered onto Outer Piezotube
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Scanner Construction:
End Cap Positioned onto Inner Piezotube
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Scanner Construction:
Tip Contact Assembly



Department of Materials Science and Engineering, Northwestern University

Scanner Construction:
Full Tip Assembly
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Scanner Construction:
Adjusting Clamping Force
on Sapphire Washer and

Soldering into Inner
Piezotube End Cap
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Scanner Complete
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Cryogenic Variable Temperature UHV STM
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Vibration Isolation
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Detail of Roof Plate
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Detail of STM Stage
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Thermal Shields with Back Panel Removed
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Stage Locking Screw for Cooldown and Cover
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Rear Door and Shutter Action
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Front Doors Open for STM Access
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Sample and Probe Mounted for Scanning
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Mirror Allows for Top-Down View
of Tip-Sample Junction
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STM Suspended for Scanning



Department of Materials Science and Engineering, Northwestern University

UHV Chamber and Liquid Helium Dewar



Department of Materials Science and Engineering, Northwestern University

Scanning Tunneling Microscopy Nanofabrication

Many nanofabrication schemes have been developed with STM
(spatial resolution down to the single atom level):

(1) Initially demonstrated by Eigler in 1989
(“IBM” written with atoms at cryogenic temperatures)

(2) Room temperature atom removal from Si(111) by Avouris

(3) Field evaporation of gold

(4) Electron stimulated desorption of hydrogen from Si(100)
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Tunable Bond Formation with STM

G. Timp, Nanotechnology, Chapter 11
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Sliding Adatoms with STM

G. Timp, Nanotechnology, Chapter 11
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The First Atom Moved with STM

Xenon on platinum requires a defect to prevent tip-induced
motion under normal scanning conditions

G. Timp, Nanotechnology, Chapter 11
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STM Manipulation of Xenon on Nickel

G. Timp, Nanotechnology, Chapter 11
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Nanograffiti

Don Eigler, IBM Alamden, http://www.almaden.ibm.com/vis/stm/atomo.html

Xenon atoms on Nickel (110) Fe atoms on Cu(111)

Kanji for atom:
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Don Eigler, IBM Alamden, http://www.almaden.ibm.com/vis/stm/atomo.html

Quantum Corrals

Fe atoms
on Cu(111)
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Don Eigler, IBM Alamden, http://www.almaden.ibm.com/vis/stm/atomo.html

Quantum Mirage (Kondo Resonance)

Co atoms
on Cu(111)

Topography:

dI/dV:
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Room Temperature Manipulation of Si(111)

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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Field Evaporation of Gold

C. Julian Chen, Introduction to Scanning Tunneling Microscopy
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550 Å × 550 Å
filled states

50 Å × 50 Å
empty states

T = 650 K
Si(100)-2×1:H

100 Å × 100 Å
filled states

T = 400 K
Si(100)-3×1:H

Hydrogen Passivated
Si(100)
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Highly reactive “dangling
bonds” are created by using
the STM as a highly localized
electron beam.

400 Å × 400 Å, -2 V, 0.1 nA

• Selective chemistry can be accomplished on patterned areas.

The linewidth and desorption
yield are a function of the incident
electron energy, the current density,
and the total electron dose.

300 Å × 300 Å, -2 V, 0.1 nA

A relatively stable and unreactive
surface is produced by hydrogen
passivating the Si(100)-2×1 surface
in ultra-high vacuum (UHV).

300 Å × 300 Å, -2 V, 0.1 nA

STM Nanolithography on Si(100)-2×1:H

J. W. Lyding, et al., Appl. Phys. Lett., 64, 2010 (1994).
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Hydrogen Desorption Mechanisms
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NBE

200 Å X 200 Å

After 2nd NBE Dose

Selective Molecular Adsorption of Norbornadiene on Silicon

G. C. Abeln, et al., J. Vac. Sci. Technol. B, 16, 3874 (1998). 
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170 Å X 170 Å, -2 V, 0.1 nA

Feedback Controlled Lithography

M. C. Hersam, et al., Nanotechnology, 11, 70 (2000). 
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Styrene:
R = phenyl

G.P Lopinski, et al., Nature, 406, 48 (2000).

Self-Directed Growth of Styrene Chains
from Individual Dangling Bonds
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Heteromolecular Nanostructures
via Multi-Step FCL



Department of Materials Science and Engineering, Northwestern University

(c)

10-12

10-11

10-10

10-9

Lo
ga

rit
hm

ic
 tu

nn
el

in
g 

cu
rr

en
t (

A
)

-4 -2 0 2 4
Sample bias voltage (V)

-2

-1

0

1

2

Tunneling current (nA
)

n-type

(d)

10-12

10-11

10-10

10-9

Lo
ga

rit
hm

ic
 tu

nn
el

in
g 

cu
rr

en
t (

A
)

-4 -2 0 2 4
Sample bias voltage (V)

-2

-1

0

1

2

Tunneling current (nA
)

p-type

10 nm

(a) n-type
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Degenerately Doped Si(100) Surfaces

N. P. Guisinger, et al.,
Nanotechology, 15, S452 (2004).
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TEMPO on the Si(100)-2×1 Surface

B 3 nm

1 nm

C

A TEMPO N
O

H
C
Si

TEMPO:
(2,2,6,6-tetramethyl-1-piperidinyloxy)

DFT Optimized Geometry (Hyper Chem Release 7)

Individual TEMPO molecules are probed with the STM

N. P. Guisinger, et al., Nano Lett., 4, 55 (2004).
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I-V Curve for TEMPO on n+-Si(100)
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• NDR events are only observed at negative sample bias. 
• Shoulder is only observed at positive sample bias.
• NDR bias values depend sensitively on tip-sample spacing
• NDR is observed in both bias sweep directions

N. P. Guisinger, et al., Nano Lett., 4, 55 (2004).
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TEMPO on p+-Si(100)
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• Qualitatively similar behavior to TEMPO on n+-Si(100) except 

opposite polarity.
• Orbital energy shift may be due to charge transfer with the 

substrate.

I-V Curve for TEMPO on p+-Si(100)
N. P. Guisinger, et al., Nano Lett., 4, 55 (2004).
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STM Spectroscopy:
CuPc and Au

Nanoelectrodes
on NiAl(110)

G. V. Nazin, et al.,
Science, 302, 77 (2003).
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C2H2 on Cu(100)

B. C. Stipe, et al.,
Science, 280, 1732 (1998).
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Inelastic Electron Tunneling Spectroscopy

B. C. Stipe, et al.,
Science, 280, 1732 (1998).
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Spatial Maps of d2I/dV2

B. C. Stipe, et al., Science, 280, 1732 (1998).

Topo d2I/dV2

@ 358 mV

d2I/dV2

@ 311 mV
d2I/dV2

@ 266 mV

C2H2 C2D2
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Contact Mode AFM Potentiometry

Bias
circuit

Nanowire (50 Ω)

I

AFM Tip

Rl = 1-100 MΩ Picoammeter

Rc = 5 kΩ

Experimental setup:
Requirements of AFM tip:

• Conductive tip with small Rc (kΩ range).
• Low Rc must be sustained after extensive

scanning in contact mode.

Resolution requirements:

To analyze nanowire failure,

• Spatial resolution < 10 nm
• Voltage sensitivity < 100 µV

Conductive diamond coated Si tips
provide Rc = 5 kΩ with low wear at
a repulsive force of 0.54 µN.
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Noncontact vs. Contact AFM Potentiometry
Noncontact mode:

Image size = (1000 nm)2

0 V

0 V

-2 V

Contact mode:

Image size = (500 nm)2

-50 mV

-15 mV

Contact mode:

Image size = (500 nm)2

-90 mV

-120 mVp-p
f = 6.8 mHz

• Noncontact mode AFM potentiometry possesses ~50 mV potential
sensitivity and ~50 nm spatial resolution.

• Contact mode AFM potentiometry possesses ~1 µV potential sensitivity,
~5 nm spatial resolution, and ~0.01 ms time response.
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AFM Potentiometry of Nanowire Failure

B

Onset of
failure

0.8V 1V C

Failure
point

0.9V 1.8V

(Breakdown current density = 3.75×1012 A/m2).

Contact mode AFM potentiometry images:  Wire width = 60 nm

0.8V 1VA

Evolution of nanowire failure:

M. C. Hersam, et al., Appl. Phys. Lett., 72, 915 (1998).
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Atomic Force Electroluminescence Microscopy

L. S. C. Pingree, et al., Appl. Phys. Lett., 85, 344 (2004).
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AFEM on Micron Scale OLED Pixels

L. S. C. Pingree, et al., Appl. Phys. Lett., 85, 344 (2004).

• Spatial and temporal variations in current flow and 
electroluminescence can be directly probed.


