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Lecture-1 Summary

= Carbon nanotube (CNT) nomenclature:
o Chirality — chiral, armchair and zig—zag CNT's

o Single—walled nanotubes (SWNTs), nanotube
bundles, multi-walled nanotubes (MWNT's)

= Experiments on CNT electromechanical
oscillators

= Mechanical modeling approaches for CNTs:
o Multi—scale paradigms
o Overview of present work on SWNT's

s Course outline




'Local QC Approach: Overview
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Lecture-2 Overview

m Tersoff-Brenner multi—body interatomic potential
for hydrocarbons

= Mathematically mapping planar and rolled—up
graphene sheets: Computing C—C bond lengths

s Cauchy-Born (CB) Rule:

o Basic hypothesis and deformation rule for bulk solids

o Modifications for curved membranes (SWNT's)

o Modifications for complex Bravais lattices (honeycombs)
o Extension to cases of inhomogeneous deformations

m Zero temperature local QC: Continuum hyperelastic
constitutive law using interatomic potentials




' Hexagonal Graphene Lattice (n,m)~> SWNT
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Tersoff-Brenner Interatomic Potential

V(a(i,j))=Ve(ali,j))-

Repulsive term
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Multi-body coupling term

a(i,j): Bond length between atoms ‘i’ and 9§’
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Tersoff-Brenner (I'B) Interatomic Potential

Multi-body coupling term  B(i, ) —[B i, j)+B(j.i)]

Where: Bl] {1+Z ( l]k) ( (i,k))}(S

k#i,j
2 2
b . C C
With:  G(6)=a,|1+%-——2
dy” d, +(1+cos8)
Parameter Value (set 1) Value (set 2)
10 parameters with 2 Do 6325 600 ¥
5 ain i
. B 15 nm™! 21 nm™?
Sets Of Va]‘ues Rlel 0.1315 nm (.1390 nm
Rl 0.17 nm 0.17 nm
Rl (.20 nm 0.20 nm
S 0.80469 0.5
a, 0011304 0.00020813

- 192 3302
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Mapping Planar Graphene to SWN'T

Chiral (circumferential) vector: I' = na, + ma,

Circumference: I =+VI.I'

2 2 2 2 2 2 2
=\/n a +m-a, +nm(a1 +a,” —a, )

Chiral angle: ¢=cos™ (F'al )

I'a,

As

Cylindrical atomic coordinates on the SWNT:

R(A)=R(B) = R(C)=R(D) = % - %ﬁ

O(A) = 24, COSC(Z% +9) Z(A)=a,sin (1/12 + ¢)

O(B)=0 Z(B)=0

0(C) = 2, cos(¢) Z(C)=a,sin(9) Rep atom ‘A’ with
d . nearest neighbors

(D) =% cos(p, +,+9) £ P) =550 (Vi +y:+9) ‘B, ‘C’ and ‘D’

d




Mapping Planar Graphene to SWN'T

2

Bond length: a(o)(X,Y)=J%[l—cos(@(Y)—®(X))J+(Z(Y)—Z(X))2

where X,Y € {A, B,C, D}

Energy of rep atom ‘A’: V =%[V(G(A,B))+V(G(A’C))+V(“(A’D))]

This is completely expressed in terms of parameters a,, k=1,2,3,4,5

These parameters can be obtained using: g_v =0, k=1,2,3,4,5
d

Additional lengths required by the TB interatomic potential:
A x”nl _L:i‘“‘w.m[lf,.#“’*” a(B,Bl) =a(C,A) a(D,DZ) =a(C,A)
( a(B,B,)=a(D,A) a(C.C)=a(D,A)
\_(’f B | a(C.C,)=a(B.A) a(D,D,)=a(B,A)
N T a(A,B)=a(C,B) a(A,B,)=a(D,B)
N, la, - a(A,C)=a(D,C) a(A,C,)=a(B,C)
Armchair Zigzag a(A,D,)=a(B,D) a(A,D,)=a(C,D)




Cauchy-Born (CB) Deformation Rule

m 1, ] : carbon atoms

= : Deformation
map

= A : Undef bond
vector

= a ;: Deformed bond
vector

ma=F(X+A) - F(X)

UNDEFORMED (REFERENCE)

CEEEN)

FIXED COORDINATE SYSTEM

f \ D‘ETEE_D-
/
/ m/

= Expand RHS -2 Taylor series about X, with r = vr,

1

1

a=FX) A+ Y VF(X):(A®A) + Y VVF(X)0(AX®A®A)+h.o.t




Cauchy-Born (CB) Deformation Rule

s Deformed C-C bond vector: a, Undeformed bond
vector: A, Continuum deformation gradient: F(X)

a = F(X).A

s CB Hypothesis: F(X) derived from continuum
deformation — assumed to be uniform at the atomic
scale

s Present work = Investigate applicability of the CB

rule for inhomogeneous deformations.
Key idea: Use Mean value theorem to obtain a

location at which to evaluate F to get the infinite
Taylor series a=5(X+A)-5(X)

V§(X,)-A=F(X,)A




Curved Membrane
Modification of CB N
= Curved membranes: e

Continuum F(X) maps N I Ny

tangent space at X on L2

manifold [ Arroyo et al., 2002 |

= Exp Map modification F

(Geodesics) [Arroyo et al., /\
2002] W, )

s Standard CB rule replaced
by a composition of 3

operations:
4 )
o ‘unwrap undeformed exp’
geodesic
- apply CB rule Born Rule: o= F fi
Proposed Rule: @ =exp, oF o exp}_clf’l a=.Fzd

o ‘wrap’ deformed geodesic
[ Arroyo et al., 2002 ]




UNDEFORMED (REFERENCE)

‘ Bond Lengths Sl

Using Exp Cauchy-Born rule: A
a = M F(X) M A X | \1,." -:_;.J .
) s NP2
DEFORMED

Graphene:
FIXED COORDINATE SYSTEM

Bravais multi—lattice [2 Sub-lattices]

Hexagonal Lattice + 2 basis atoms
a(i, j) =M ' FX)M[A(, j)+n]

when ‘1’ |5’ lie on different
sub-lattices,

and n = 0 otherwise




‘ Local QC: Define Strain Energy Density

Shaded area = Rep unit cell of area
Q_; on a planar graphene sheet

A > Vla(i, H){E}]
W(E,nE)) =W (E) = <&

Q

cell

N chosen such that B_W =

on |,

N: Internal variable obtained numerically
by energy minimization for each imposed
deformation




Stress-Strain Relationship

Stress: Requires a wall thickness for definition —
3.35 A (from literature) used in both QC and DFT
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Lecture-3 Overview

Focus on a specific type of deformation:
Coupled extension and twist

Obtain kinematic coupling effects in extension
and twist for SWNTs

Modified CB rule for inhomogeneous
deformations

Stress—strain plots and elastic moduli in
extension and twist

Ab initio evaluation of Young’'s modulus using
density functional theory

Comparison of results from different
approaches and concluding remarks




