

Subrata Mukherjee

Cornell University, NY, USA

Lecture-1 Summary

- Carbon nanotube (CNT) nomenclature:
 - Chirality chiral, armchair and zig-zag CNTs
 - Single-walled nanotubes (SWNTs), nanotube bundles, multi-walled nanotubes (MWNTs)
- Experiments on CNT electromechanical oscillators
- Mechanical modeling approaches for CNTs:
 - Multi-scale paradigms
 - Overview of present work on SWNTs
- Course outline

Local QC Approach: Overview

Lecture-2 Overview

- Tersoff-Brenner multi-body interatomic potential for hydrocarbons
- Mathematically mapping planar and rolled-up graphene sheets: Computing C-C bond lengths
- Cauchy-Born (CB) Rule:
 - Basic hypothesis and deformation rule for bulk solids
 - Modifications for curved membranes (SWNTs)
 - Modifications for complex Bravais lattices (honeycombs)
 - Extension to cases of inhomogeneous deformations
- Zero temperature local QC: Continuum hyperelastic constitutive law using interatomic potentials

Hexagonal Graphene Lattice (n,m)→ SWNT

Tersoff-Brenner Interatomic Potential

a(i,j): Bond length between atoms 'i' and 'j'

$$V_{R}(a) = \frac{D^{(e)}}{S-1} \exp\left[-\sqrt{2S}\beta(a - R^{(e)})\right] f_{c}(a)$$

$$V_{A}(a) = \frac{D^{(e)}S}{S-1} \exp\left[-\sqrt{2/S}\beta(a - R^{(e)})\right] f_{c}(a)$$

$$f_{c}(a) = \begin{cases} 1 & a < R^{(1)} \\ \frac{1}{2}\left\{1 + \cos\left[\frac{\pi(a - R^{(1)})}{R^{(2)} - R^{(1)}}\right]\right\} & R^{(1)} \le a \le R^{(2)} \\ 0 & a > R^{(2)} \end{cases}$$

Tersoff-Brenner (TB) Interatomic Potential

Multi-body coupling term $\overline{B}(i,j) = \frac{1}{2} [B(i,j) + B(j,i)]$

Where:
$$B(i,j) = \left[1 + \sum_{k \neq i,j} G(\theta(i,j,k)) f_c(a(i,k))\right]^{-\delta}$$

With:
$$G(\theta) = a_0 \left[1 + \frac{c_0^2}{d_0^2} - \frac{c_0^2}{d_0^2 + (1 + \cos \theta)^2} \right]$$

10 parameters with 2 sets of values:

Parameter	Value (set 1)	Value (set 2)
$D^{(e)}$	6.325 eV	6.00 eV
S	1.29	1.22
$R^{(e)}$	15 nm ⁻¹	21 nm ⁻¹
$R^{(e)}$	0.1315 nm	0.1390 nm
$R^{(1)}$	0.17 nm	0.17 nm
$R^{(2)}$	0.20 nm	0.20 nm
δ	0.80469	0.5
a_0	0.011304	0.00020813
c_0^2	19^{2}	330^{2}
$d_0 \\ {c_0}^2 \\ {d_0}^2$	2.5 ²	3.5^{2}

Mapping Planar Graphene to SWNT

Chiral (circumferential) vector: $\Gamma = na_1 + ma_2$

Circumference: $\Gamma = \sqrt{\Gamma \cdot \Gamma}$

$$= \sqrt{n^2 a_1^2 + m^2 a_2^2 + nm(a_1^2 + a_2^2 - a_3^2)}$$

Chiral angle: $\phi = \cos^{-1} \left(\frac{\Gamma \cdot a_1}{\Gamma a_1} \right)$

Cylindrical atomic coordinates on the SWNT:

$$R(A) = R(B) = R(C) = R(D) = \frac{d}{2} = \frac{\Gamma}{2\pi}$$

$$\Theta(A) = \frac{2a_4 \cos(\psi_2 + \phi)}{d} \qquad Z(A) = a_4 \sin(\psi_2 + \phi)$$

$$\Theta(B) = 0 Z(B) = 0$$

$$\Theta(C) = \frac{2a_1 \cos(\phi)}{d} \qquad Z(C) = a_1 \sin(\phi)$$

$$\Theta(C) = \frac{1}{d}$$

$$\Theta(D) = \frac{2a_3 \cos(\psi_1 + \psi_2 + \phi)}{d}$$

$$Z(D) = a_3 \sin(\psi_1 + \psi_2 + \phi)$$

Rep atom 'A' with nearest neighbors 'B', 'C' and 'D'

Mapping Planar Graphene to SWNT

Bond length:
$$a^{(0)}(X,Y) = \sqrt{\frac{d^2}{2} [1 - \cos(\Theta(Y) - \Theta(X))] + (Z(Y) - Z(X))^2}$$

where $X, Y \in \{A, B, C, D\}$

Energy of rep atom 'A':
$$V = \frac{1}{2} \left[V(a(A,B)) + V(a(A,C)) + V(a(A,D)) \right]$$

This is completely expressed in terms of parameters a_k , k=1,2,3,4,5

These parameters can be obtained using: $\frac{\partial V}{\partial a_k} = 0$, k = 1, 2, 3, 4, 5

Additional lengths required by the TB interatomic potential:

$$a(B, B_1) = a(C, A)$$
 $a(D, D_2) = a(C, A)$
 $a(B, B_2) = a(D, A)$ $a(C, C_1) = a(D, A)$
 $a(C, C_2) = a(B, A)$ $a(D, D_1) = a(B, A)$
 $a(A, B_1) = a(C, B)$ $a(A, B_2) = a(D, B)$
 $a(A, C_1) = a(D, C)$ $a(A, C_2) = a(B, C)$
 $a(A, D_1) = a(B, D)$ $a(A, D_2) = a(C, D)$

Cauchy-Born (CB) Deformation Rule

- i, j : carbon atoms
- \mathcal{F} : Deformation map
- A: Undef bond vector
- **a**: Deformed bond vector
- $\mathbf{a} = \mathcal{F}(\mathbf{X} + \mathbf{A}) \mathcal{F}(\mathbf{X})$

Expand RHS \rightarrow Taylor series about X, with $F = \nabla \mathcal{F}$. $\mathbf{a} = \mathbf{F}(\mathbf{X}) \cdot \mathbf{A} + \frac{1}{2!} \nabla \mathbf{F}(\mathbf{X}) \cdot (\mathbf{A} \otimes \mathbf{A}) + \frac{1}{3!} \nabla \nabla \mathbf{F}(\mathbf{X}) \cdot (\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{A}) + \text{h.o.t}$

Cauchy-Born (CB) Deformation Rule

 Deformed C-C bond vector: a, Undeformed bond vector: A, Continuum deformation gradient: F(X)

$$a = F(X).A$$

- CB Hypothesis: **F**(**X**) derived from continuum deformation assumed to be uniform at the atomic scale

$$= \nabla \mathcal{F}(\mathbf{X}_{a}) \cdot \mathbf{A} = \mathbf{F}(\mathbf{X}_{a}) \cdot \mathbf{A}$$

Curved Membrane Modification of CB

- Curved membranes: Continuum F(X) maps tangent space at X on manifold
- Exp Map modification (Geodesics) [Arroyo et al., 20021
- Standard CB rule replaced by a composition of 3 operations:
 - 'unwrap' undeformed geodesic
 - apply CB rule
 - 'wrap' deformed geodesic

Bond Lengths

Using Exp Cauchy-Born rule:

$$\mathbf{a} = M^{-1}\mathbf{F}(\mathbf{X})M\mathbf{A}$$

Graphene:

Bravais multi-lattice [2 Sub-lattices]

Hexagonal Lattice + 2 basis atoms

$$\mathbf{a}(i,j) = M^{-1}\mathbf{F}(\mathbf{X})M[\mathbf{A}(i,j) + \mathbf{\eta}]$$

when 'i', 'j' lie on different sub-lattices,

and $\eta = 0$ otherwise

FIXED COORDINATE SYSTEM

Local QC: Define Strain Energy Density

Shaded area \rightarrow Rep unit cell of area Ω_{cell} on a planar graphene sheet

$$W(\mathbf{E}, \mathbf{\eta}(\mathbf{E})) \equiv \hat{W}(\mathbf{E}) = \frac{\sum_{cell} V[a(i, j) \{ \mathbf{E} \}]}{\Omega_{cell}}$$

$$|\eta|_{\rm chosen}$$
 such that $\left. \frac{\partial W}{\partial \eta} \right|_{\rm E} = 0$

η: Internal variable obtained numerically by energy minimization for each imposed deformation

Stress-Strain Relationship

Stress: Requires a wall thickness for definition – 3.35 Å (from literature) used in both QC and DFT

$$\mathbf{T} = \frac{d\hat{W}}{d\mathbf{E}} = \frac{\partial W}{\partial \mathbf{E}} \bigg|_{\mathbf{\eta}} + \frac{\partial W}{\partial \mathbf{\eta}} \bigg|_{\mathbf{E}} \cdot \frac{d\mathbf{\eta}}{d\mathbf{E}}$$

$$=\frac{\partial W}{\partial \mathbf{E}}\Big|_{\mathbf{n}}$$

Second Piola-Kirchhoff Stress Tensor

$$\left[\text{since, } \frac{\partial W}{\partial \mathbf{\eta}} \right|_{\mathbf{E}} = \mathbf{0} \right]$$

Lecture-3 Overview

- Focus on a specific type of deformation:
 Coupled extension and twist
- Obtain kinematic coupling effects in extension and twist for SWNTs
- Modified CB rule for inhomogeneous deformations
- Stress-strain plots and elastic moduli in extension and twist
- Ab initio evaluation of Young's modulus using density functional theory
- Comparison of results from different approaches and concluding remarks