Modeling of the Deformation of Single-walled Carbon Nanotubes: Mechanical Deformation and Surface Charge Distribution: LECTURE 3

Subrata Mukherjee

Cornell University, NY, USA

Lecture-2 Summary

- Tersoff-Brenner multi-body interatomic potential for hydrocarbons
- Mathematically mapping planar and rolled-up graphene sheets: Computing C-C bond lengths
- Cauchy-Born (CB) Rule:
 - Basic hypothesis and deformation rule for bulk solids
 - Modifications for curved membranes (SWNTs)
 - Modifications for complex Bravais lattices (honeycombs)
 - Extension to cases of inhomogeneous deformations
- Zero temperature local QC: Continuum hyperelastic constitutive law using interatomic potentials

Lecture-3 Overview

- Focus on a specific type of deformation: Coupled extension and twist
- Obtain kinematic coupling effects in extension and twist for SWNTs
- Modified CB rule for inhomogeneous deformations
- Stress-strain plots and elastic moduli in extension and twist
- Ab initio evaluation of Young's modulus using density functional theory
- Comparison of results from different approaches and concluding remarks

Deformations: Extension and Twist of SWNTs

- Simple class of deformations:
 - Analytic treatment
 - Provides insight into modeling aspects for complex deformations
- Certain SWNTs:
 - Possess twisted atomic structure
 - Exhibit natural extension-twist coupling

Deformations: Extension and Twist of SWNTs

Propose a generalized deformation map:

$r = \gamma R$
$\theta = \Theta + f(Z;k)$
$z = (1 + \varepsilon) Z$

- r, R : Def & Undef Radii
- $\boldsymbol{\theta},\,\boldsymbol{\Theta}$: Def & Undef Polar angles
- z, Z : Def & Undef Axial coords
- Deformation inhomogeneous in general → CB rule to be modified!
- Reference cylinder \rightarrow deformed cylinder.
- f(Z;k) → kZ: Well-known extension-twist deformation, k: Twist per unit undeformed length

f(Z;k): Need to characterize

Equilibrium: Strong Form

- Axi-symmetric stress measures (Θ independent).
- Traction-free BC on the inner and outer lateral surfaces of the SWNT
 - Final set of local equilibrium equations:

$$T_{\Theta\Theta} + 2Rf' T_{\Theta Z} + f'^2 R^2 T_{ZZ} = 0...(1)$$
$$\frac{\partial}{\partial Z} \Big[T_{\Theta Z} + f' R T_{ZZ} \Big] = 0...(2)$$
$$\frac{\partial T_{ZZ}}{\partial Z} = 0...(3)$$

Equilibrium: Weak Form

Imposed Extension

Satisfies (1) and (2) for **any** f (Z;k) such that:

(3) is trivially satisfied.

$$T_{\Theta\Theta} + 2Rf' T_{\Theta Z} + f'^2 R^2 T_{ZZ} = 0...(1)$$
$$\frac{\partial}{\partial Z} \Big[T_{\Theta Z} + f' R T_{ZZ} \Big] = 0...(2)$$
$$\frac{\partial T_{ZZ}}{\partial Z} = 0...(3)$$

Imposed Twist

Satisfies (1) and (3) for arbitrary 'f'. **Necessary** condition to satisfy (2): f' = constant

Bond Length Deformations

 Undeformed bond vector between 'i' and 'j' (unwrapped geodesic on the cylinder):

$$\tilde{\mathbf{A}} = R(\Theta_j - \Theta_i)\mathbf{e}_{\Theta} + (Z_j - Z_i)\mathbf{e}_Z$$

Deformed geodesic vector from direct map:

$$r = \gamma R$$

$$\theta = \Theta + f (Z;k)$$

$$z = (1+\epsilon) Z$$

$$\tilde{\mathbf{a}} = \gamma R \Big[\Big(\Theta_j - \Theta_i \Big) + f(Z_j) - f(Z_i) \Big] \mathbf{e}_{\theta} + \Big(z_j - z_i \Big) \mathbf{e}_z \Big]$$

CB rule evaluated at some intermediate point ' α ': '/

$$\hat{\mathbf{a}} = \gamma R \Big[\Big(\Theta_j - \Theta_i \Big) + \Big(Z_j - Z_i \Big) f'(Z_\alpha) \Big] \mathbf{e}_{\theta} + \Big(z_j - z_i \Big) \mathbf{e}_z \Big]$$

Bond Length Deformations (contd...)

• 'Best' **location** to apply the CB rule:

$$f'(Z_{\alpha}) = \frac{f(Z_{j}) - f(Z_{i})}{Z_{j} - Z_{i}} \xrightarrow{\text{Use Mean-value}} \text{Theorem in the CB rule!} \\ = \nabla \mathcal{F}(\mathbf{X}_{a}) \cdot \mathbf{A} = \mathbf{F}(\mathbf{X}_{a}) \cdot \mathbf{A}$$

• Θ_{α} : Automatically determined – α lies on geodesic

• For
$$f(Z;k) = k Z^2$$
, $Z_{\alpha} = (Z_i + Z_j)/2$ --- Mid-Point

Note : Bond lengths --- always measured as
 Euclidean lengths between atoms (after wrapping the deformed geodesic back onto the deformed cylinder).

$f(Z;k) = k Z^2$: Binding energy/atom $(E_b) \rightarrow$ Comparison of different unwrapping rules

-5.5

-6.5

E_b (eV/atom)

Brenner Parameter Set 1

(10,0)

Start Pt • End Pt

Mid Pt & Exact

K. Chandraseker, S. Mukherjee, Y. X. Mukherjee, IJSS, to appear, 2006

Brenner Parameter Set 2: Qualitatively similar results (not shown)

K. Chandraseker, S. Mukherjee, Y. X. Mukherjee, IJSS, to appear, 2006

Stress-Strain Slopes: (a) Independent of SWNT chirality (b) Parameter set dependent: qualitatively similar, quantitatively different

Coupling Effects on Young's and Shear Moduli

Moduli Values with Wall Thickness of 0.335 nm

Brenner Parameter Set 1			Brenner Parameter Set 2		
	Y [GPa]	Zhang et al. (2002): 475 GPa		Y [GPa]	Zhang et al.
(9,6) Chiral	470		(9,6) Chiral	693	(2002): 705 GPa
(5,5) Armchair	457		(5,5) Armchair	670	Arroyo & Belvtschko
(10,0) Zigzag	464		(10,0) Zigzag	684	(2004): 704
	G [GPa]			G [GPa]	GPa
(9,6) Chiral	188		(9,6) Chiral	240	Arroyo &
(5,5) Armchair	193		(5,5) Armchair	246	Belytschko (2004): 249
(10,0) Zigzag	177		(10,0) Zigzag	226	GPa

Most reported experimental / atomistic studies of Y predict ~ 1000 GPa

© Good agreement (within 3%) between slopes of stress strain curves and moduli calculation

3 Moduli are underestimated and parameter set dependent

- PWscf Code: PBE-GGA Exchange-Correlation, Ultrasoft Vanderbilt pseudopotentials
- Plane Wave Basis: E_{cut-off} = 50 Ry
- 13.8 Å x 13.8 Å in-plane periodic box dimension [Mielke et al. 2004, Chem. Phys. Lett. 390, pp. 413-420] (create vacuum around SWNT) for tetragonal lattice
- Brillouin zone sampling: 2x2x4 for (5,0), (5,5). Γ -point for (4,1)
- Extension deformations only no imposed twist

Concluding Remarks

QC with Empirical Potentials	DFT
© Y and G found analytically	⊗ Y found numerically
③ Y and G parameter set dependent	© No experimentally fit parameters
© Complete stress-strain curves in ~ 1 minute on a desktop PC (2 GHz, 512 MB RAM)	⊗ Each data point ~ 10 hours on a desktop PC (2 GHz, 512 MB RAM)
© General deformations straightforward in FE framework	 Deformations restricted by computational expense and translational periodicity

- QC with empirical potentials: Effect of extension-twist coupling on Y and G explicitly shown with cylindrical reference configuration
- Future directions:
 - DFT-QC bridged approach: computational expense?
 - DFT approach to extract continuum parameter values

Acknowledgements

- Cornell Theory Center: Serial Cluster
- Computing Facility at the Department of Theoretical and Applied Mechanics, Cornell University

References

- Coupling of extension and twist in single-walled carbon nanotubes, K. Chandraseker, S. Mukherjee, ASME J. App. Mech., 73 (2), pp. 315-326, 2006.
- Modifications to the Cauchy–Born Rule: Applications in the deformation of single–walled carbon nanotubes, K. Chandraseker, S. Mukherjee, Y.X. Mukherjee, Int. J. Solids and Structures, to appear, 2006.
- Atomistic-continuum and *ab initio* estimation of the elastic moduli of single-walled carbon nanotubes, K. Chandraseker, S. Mukherjee, submitted, 2006.

Thank you!

Subrata Mukherjee

sm85@cornell.edu