Modeling of the Deformation of Single-walled Carbon Nanotubes: Mechanical Deformation and Surface Charge Distribution: LECTURE 4

Subrata Mukherjee

Cornell University, NY, USA

Charge Distribution on Thin Conducting Nanotubes----Reduced 3-D Model

BEM Formulation for Potential Theory

Governing equation (in 2-D or in 3-D): $\nabla^2 u(\mathbf{x}) = 0, \forall \mathbf{x} \in B(1)$

with given boundary conditions on u or $q = \frac{\partial u}{\partial n}$ on the boundary ∂B .

Green's identity:

$$\int_{B} \left[u \nabla^{2} v - v \nabla^{2} u \right] dV = \int_{\partial B} \left[u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right] dS \quad (2)$$

Choose v to be the (infinite domain) Green's function $G(\mathbf{x}, \mathbf{y})$ that satisfies the equation:

$$\nabla^2 G(\boldsymbol{\xi}, \mathbf{y}) = -\Delta(\boldsymbol{\xi}, \mathbf{y}) \tag{3}$$

where Δ is the Dirac delta function.

Green's functions that satisfy (3) are:

$$G(\boldsymbol{\xi}, \mathbf{y}) = \frac{1}{2\pi} \ln \left[\frac{1}{r(\boldsymbol{\xi}, \mathbf{y})} \right] \quad \text{in} \quad 2D$$

$$G(\boldsymbol{\xi}, \mathbf{y}) = \frac{1}{4\pi r(\boldsymbol{\xi}, \mathbf{y})} \quad \text{in} \quad 3D \quad (4)$$

Substitute (4) into (2) and use (3) to get:

$$u(\boldsymbol{\xi}) = \int_{\partial B} [G(\boldsymbol{\xi}, \mathbf{y})q(\mathbf{y}) - F(\boldsymbol{\xi}, \mathbf{y})u(\mathbf{y})] dS(\mathbf{y})$$
(5)

where
$$F(\boldsymbol{\xi}, \mathbf{y}) = \frac{\partial G(\boldsymbol{\xi}, \mathbf{y})}{\partial n(\mathbf{y})}$$
 (6)

Now let
$$\xi \in B \rightarrow \mathbf{x} \in \partial B$$
 to get the BIE:

$$C(\mathbf{x})u(\mathbf{x}) = \int_{\partial B} \left[G(\mathbf{x}, \mathbf{y})q(\mathbf{y}) - F(\mathbf{x}, \mathbf{y})u(\mathbf{y}) \right] dS(\mathbf{y})$$
(7)

where $C(\mathbf{x}) = a(\mathbf{x})/2 \pi$, with $a(\mathbf{x})$ the included angle at $\mathbf{x} \in \partial B$, and \mathbf{f} the CPV of the integral.

Discretization of the BIE (7) - A simple case :

straight constant boundary elements.

$$\alpha u(P^{(i)}) = \sum_{j=1}^{N_E} \int_{\partial B_j} \left[\frac{\partial \ln r(P^{(i)}, Q)}{\partial n(Q)} u(Q) - \ln r(P^{(i)}, Q)q(Q)] \right] dS(Q)$$
(8)

$$\alpha u(P^{(i)}) = \sum_{j=1}^{N_E} u(Q^{(j)}) \oint_{\partial B_j} \frac{\partial \ln r(P^{(i)}, Q)}{\partial n(Q)} dS(Q)$$

$$-q(Q^{(j)}) \int_{\partial B_j} \ln r(P^{(i)}, Q) dS(Q)$$

$$\alpha u_i = A_{ij} u_j - B_{ij} q_j \qquad (10)$$

$$\alpha I\{u\} = [A]\{u\} - [B]\{q\} \qquad (11)$$

From 2.

For convex region B:

$$A_{ij} = \begin{cases} \theta_b - \theta_a & \text{for } D \neq 0\\ 0 & \text{for } D = 0 \end{cases}$$
(12)

$$B_{ij} = \begin{cases} D [\tan(\theta)(\ln(r) - 1) + \theta]_a^b & \text{for } D \neq 0\\ \beta [r(\ln(r) - 1]_a^b & \text{for } D = 0, \ P^{(i)} \notin \partial B_j \\ r_b(\ln(r_b) - 1) + r_a(\ln(r_a) - 1) & \text{for } D = 0, \\ P^{(i)} \in \partial B_j \end{cases}$$
(13)

(14)

$$\beta = \begin{cases} 1 & \text{for } r_b > r_a \\ -1 & \text{for } r_b < r_a \end{cases}$$

P Q n P D D

b

 $\alpha I\{u\} = [A]\{u\} - [B]\{q\}$ (15)

Switching columns:

$$[C]{x} = [D]{y} \equiv {b}$$
(16)

where $\{x\}$ contains the unknown and $\{y\}$ the prescribed boundary values.

It is noted that the above procedure requires each node/element to interact with all other nodes/elements directly. Therefore, $\mathcal{O}(N_E)^2$ operations are required to compute the matrices [C] and [D]. Storage requirement is also $\mathcal{O}(N_E)^2$.

BEM Formulation for 3-D Potential Theory Outside a Doubly-connected Body

Figure 3: Cross-section of a prismatic doubly-connected conductor

$$\begin{aligned} \phi(\boldsymbol{\xi}) &= \int_{\partial B_0} \frac{\sigma(\mathbf{y})}{4\pi\epsilon r(\boldsymbol{\xi}, \mathbf{y})} ds(\mathbf{y}) + \int_{\partial B_I} \frac{\sigma(\mathbf{y})}{4\pi\epsilon r(\boldsymbol{\xi}, \mathbf{y})} ds(\mathbf{y}) \\ &+ \int_{\partial B_0} \frac{\mathbf{r}(\boldsymbol{\xi}, \mathbf{y}) \cdot \mathbf{n}(\mathbf{y})\phi(\mathbf{y})}{4\pi r^3(\boldsymbol{\xi}, \mathbf{y})} ds(\mathbf{y}) \\ &+ \int_{\partial B_I} \frac{\mathbf{r}(\boldsymbol{\xi}, \mathbf{y}) \cdot \mathbf{n}(\mathbf{y})\phi(\mathbf{y})}{4\pi r^3(\boldsymbol{\xi}, \mathbf{y})} ds(\mathbf{y}) + C \\ &+ \int_{\partial B_E} \frac{\sigma(\mathbf{y})}{4\pi\epsilon r(\boldsymbol{\xi}, \mathbf{y})} ds(\mathbf{y}) \\ &+ \int_{\partial B_E} \frac{\mathbf{r}(\boldsymbol{\xi}, \mathbf{y}) \cdot \mathbf{n}(\mathbf{y})\phi(\mathbf{y})}{4\pi r^3(\boldsymbol{\xi}, \mathbf{y})} ds(\mathbf{y}), \qquad \boldsymbol{\xi} \in B \qquad (17) \end{aligned}$$

Only the first integral survives for a thin conductor with $\phi = A$.

BIEs for CNT

$$\phi(x) = \int_{s_1} \frac{q(y)}{4\pi \varepsilon r(x, y)} dl(y) + \int_{\widetilde{S}_1} \frac{q(y)}{4\pi \varepsilon r(x, y)} dl(y) + C \quad (18)$$
$$q(y) = \int_{0}^{2\pi} \sigma(y_3, b, \theta) bd \theta \qquad y_3 \in s_1 \text{ or } \widetilde{s}_1 \quad (19)$$

Gradient BIE - Source Point Approaching the Nanotube Surface

Charge density q as a function of length

$l_N(nm)$	$q_0(pC/m)$ computed	$q_0 = \frac{2\pi\varepsilon\phi}{\arccos h(1+g/b)} (pC/m)$ exact for $l_N \to \infty$	difference(%)
1000	8.59	8.051	6.65
1500	8.35		3.71
2000	8.24		2.34
3000	8.15		1.23

table 1 varying length of nanotube

Two nanotube models with $\phi_1 = 1$ volt, $\tilde{\phi}_1 = -1$ volt $\varepsilon = 8.854 \times 10^{-12}$ F/m. b = 1 nm and g = 500 nm.

Charge density q as a function of outer radius

b(nm)	$q_0(pC/m)$ computed	$q_0 = \frac{2\pi\varepsilon\varphi}{\arccos h(1+g/b)} (pC/m)$ exact for $l_N \to \infty$	difference(%)
20	14.37	14.08	2.06
7.5	11.53	11.34	1.68
3	9.70	9.57	1.36
1	8.15	8.051	1.23

table 2 varying outer radius of nanotube

Two nanotube models with $\phi_1 = 1$ volt, $\tilde{\phi}_1 = -1$ volt $\ell_N = 3000$ nm and g = 500 nm. $\varepsilon = 8.854 \times 10^{-12}$ F/m.

Performs well for $\ell_N / (2b) \ge 500$

$L/b \ge 500$

Figure 9 Charge density q along nanotube for different values of b

Charge density q as a function of gap

g(nm)	$q_0(pC/m)$ computed	$q_0 = \frac{2\pi\varepsilon\varphi}{\arccos h(1+g/b)} (pC/m)$ exact for $l_N \to \infty$	difference(%)
500	8.15	8.051	1.23
100	10.49	10.48	0.1
25	14.08	14.08	0
5	22.38	22.45	0.31

table 3 varying gap between nanotube and ground

Two nanotube models with $\phi_1 = 1$ volt, $\tilde{\phi}_1 = -1$ volt $\ell_N = 3000$ nm and g = 500 nm. $\varepsilon = 8.854 \times 10^{-12}$ F/m b=1nm.

Performs well for $g/(2b) \ge 2.5$

Charge density q as a function of number of elements

number of elements	q_0 at center (pC/m)
11	8.1526
25	8.1523
51	8.1521
101	8.1520
201	8.1519

table 4 convergence test—varying number of elements (8.051)

Two nanotube models with $\phi_1 = 1$ volt, $\tilde{\phi}_1 = -1$ volt $\ell_N = 3000$ nm and g = 500 nm $\varepsilon = 8.854 \times 10^{-12}$ F/m.

Gradient BIEs for a CNT with image

$$\sigma(x) = \varepsilon \frac{\partial \phi}{\partial n}(x) = \varepsilon n(x) \cdot [\nabla_{\xi} \phi(\xi)]_{\xi=x}$$

$$\sigma(x_3, b, \pi/2) = \int_{s_1^+ \cup s_2^+} \frac{q(y)r(x^+, y) \cdot n(x^+)}{4\pi r^3(x^+, y)} dl(y)$$

Figure 10 2 Deross section model

table 5 charge density on two points A & B

Two nanotube models with $\phi_1 = 1$ volt, $\tilde{\phi}_1 = -1$ volt $\ell_N = 3000$ nm and g = 500 nm. $\varepsilon = 8.854 \times 10^{-12}$ F/m b=1nm

Three Nanotubes with three imaginary tubes

Figure 12 Configuration with three tubes

H. Chen and S. Mukherjee, Charge distribution on thin conducting nanotubes. International Journal for Numerical Methods in Engineering. 2006. In press.

ACKNOWLEDGEMENTS

NSF Grants:

- EEC 0303674
- CMS 0508466
- to Cornell University.

Karthick Chandraseker Hui Chen Yu Xie Mukherjee