
Introduction to Biomaterials and 
Biomolecular Self Assembly

Monica Olvera de la Cruz
Northwestern University 

Department of Materials Science and Engineering

2220 Campus Drive

Evanston, IL 60202



Outline

• Introduction to Statistical Mechanics  
Magnetic system with two states (up and down)
Entropy
Boltzman factor

• Diffusion
• Polymers

Polymer Conformation

• Copolymers
Melts  (SCMF)
Micelles (Simulations)



Introduction to Statistical Mechanics

• Relationship of number of accessible states to entropy

• Transfer of energy between two systems, increases entropy 
and achieves the same temperature

• Probability of finding a system at energy ε over 0

• Thermal average energy at temperature τ

• Helmholtz free enegy
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Quantum States

• Fundamental assumption: equally 
likely to be found in any of the 
quantum states accessible to it

• Each quantum state has a definite 
energy

• Multiplicity or degeneracy:  quantum 
states that have nearly the same energy

• Important: number of quantum states, 
not number of energy levels 2
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Binary Model System

• Magnetic system: N non-interacting spins 
• Spin value: +m (↑) or –m (↓)
• 2N equally accessible arrangements
• Each arrangement specifies the configuration of the 1st, 

2nd,…Nth spin:

…↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ...

• Total magnetization M: Nm, (N-2)m, (N-4)m,…   -Nm
The same value of M can occur with multiple arrangements



Enumeration of States
• Spin excess with s being an integer having N↑ spins up and 

N↓ spins down:

• The multiplicity factor or the number of arrangements 
[g(N,s)] for a system of N magnets that have the same value 
of s:

• Application of magnetic field leads to a different energy for 
states with a different s

• Total number of arrangements:
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Sharpness of the Multiplicity Function

• N! prevents calculation of multiplicity for large values of 
N

• Gaussian distribution (using the Stirling approximation) 
allows for the approximation of multiplicity when N >> 1
and |s| << N

Sharp peak at s = 0
System contains stable physical properties

• Average values are necessary – macroscopic 
measurements of a constantly changing system
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Closed Systems

• Constant: energy, number of particles, volume, and 
external parameters affecting the system

• Probability (P) of a system being in an accessible state (s)

• Two systems in thermal contact 
Energy (only) is transferred freely between the two
Total energy is constant
Number of accessible states in the combined system:

• N1, N2, and s are constant
Most probably conformation – when g1g2 is at a maximum; 
dictates most of the properties of the system
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Entropy

• Using (1), relate entropy of two systems in thermal contact

• (2) comes from: the equation above, the thermal contact of 
the two systems, and:

Boltzman constant: kB = 1.381 x 10-23 joules/Kelvin

• Positive change in entropy when the two systems come 
into contact:
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Entropy Flow Between Systems

• Energy flow: from the system with higher temperature (U1) 
to system with lower temperature (U2)

• The entropy increases until the system reaches the most 
probable configuration
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Ways to Increase the Entropy of a System

Add particles Decompose
molecules

Increase the
volume

Add energy Let a linear
polymer curl up

Velocity vectors



Laws of Thermodynamics

• Zeroth law: if two systems are in thermal equilibrium with 
a third system, they must be in thermal equilibrium with 
each other

• First law: heat is a form of energy (conservation of energy)
• Second law: if a closed system is in a configuration that is 

not the equilibrium configuration, the most probably 
consequence will be that the entropy of the system will 
increase (law of increase of entropy)

• Third law: the entropy of a system approaches a constant 
value as the temperature approaches zero
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Boltzmann Factor
• Closed system: small system in thermal contact with a very 

large system (reservoir)

• When S is in a specific state the total number of accessible 
states = gℜ

• A Taylor series expansion on (3) altered for the two states 
above gives:

Boltzmann factor: term in the form of exp(-ε/τ)
Probability of finding the system in quantum state 1 versus 2

Reservoir ℜ
Energy U0 – ε1

gℜ(U0 – ε1) states

System S

State 1
Energy ε1

Reservoir ℜ
Energy U0 – ε2

gℜ(U0 – ε2) states

System S

State 2
Energy ε2

( )
( )

( )
( )τε

τε
ε
ε

/exp
/exp

2

1

2

1

−
−

=
P
P



Partition Function and Helmholtz Free Energy
• Partition function:

• Proportionality between the probability and the Boltzmann 
factor

• The average energy for S given in (4) is U or <ε>
• Helmholtz free energy (5) shows the balance of a system 

with minimum energy and maximum entropy
• Relation of the Helmhotlz and the partition function:

• Relation of probability to the Helmholtz and the energy
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Introduction to Diffusion

• The movement of atoms or molecules from an area of 
higher concentration to an area of lower concentration

• Time dependent process
• Break present bonds and form new bonds
• Surrounding atoms may need to be pushed out of the way
• Energy of vibration and movement comes from 

surrounding heat
• Self-diffusion – within same material; no macroscopic 

change
• Inter / impurity diffusion – between two different 

materials; change in concentration



Example of Diffusion

Callister, William D. Jr. Materials Science and Engineering an Introduction, 6th Ed.



Range of Structure in the Solid State

• Crystalline: symmetry, 
lattice structure

• Amorphous or non-
crystalline: no symmetry

• Close-packed structure: densely packed 
• Open structure: loosely packed
• Crystallinity does not dictate open or close-packed
• Materials can be crystalline, polycrystalline, or amorphous
• Defects: small as an atom (vacancy) → large enough to 

see with naked eye (cracks)
• Impurity: interstitial atom



Vacancy Diffusion

• Occurs more often with open structures
• Vacancy must be present in structure
• Atom replaces a vacancy from a similar sized atom
• See with self of interdiffusion

Callister, William D. Jr. Materials Science and Engineering an Introduction, 6th Ed.



Interstitial Diffusion

• Occurs more often with open structures
• Atom moves between other atoms of the structure
• Atom tends to be smaller in diameter
• More probable to occur versus vacancy diffusion

Callister, William D. Jr. Materials Science and Engineering an Introduction, 6th Ed.



Path of Diffusion

• Diffusing atom follows a random path

http://butler.cc.tut.fi/~materwww/minustako/minustako.html

net
distance 
traveled



Fick’s First Law of Diffusion

• Fickian or Type I diffusion 
• Steady-state
• Diffusion flux (F) – rate of transfer 

per unit area of cross section
• Diffusion constant (D) –dependent 

on identity of solute and type of 
diffusion 

• Concentration (C) 
• Distance (X) – coordinate normal to 

cross section
• Concentration gradient – slope of the 

line
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Fick’s Second Law of Diffusion

• Nonsteady-state
• Diffusion flux and 

concentration gradient 
vary with time

• Seen in practical situations
• Time (t)
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Introduction to Polymers

• Many monomers → polymer
Many possible functional groups: hydrocarbon, alcohol, ether, 
acid, aromatic, …
Monomers help determine properties and three-dimensional 
structure 

• Linear, branched, crosslinked, network
• Homopolymer or copolymer

Examples: plastics, DNA, proteins

Callister, William D. Jr. Materials Science and Engineering an Introduction, 6th Ed.



Mechanical Properties of Polymers

• Stress and strain tests
Tension
Compression
Shear and torsion

• Load is applied uniformly until material is deformed
• Adhesion

Callister, William D. Jr. Materials Science and Engineering an Introduction, 6th Ed.



Movement of a Polymer

• Polymer movement in a solution is dominated by entropy

Number of conformations of the polymer (ℜ)
• Without interactions movement is a random walk
• With interactions movement is a self-avoiding walk (saw) 
• Interactions are either within a polymer chain or between 

two or more chains
• In different environments the conformation is affected

In different solutions, in blends, or if monomers are charged, etc.
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Polymer Conformation
• Flexibility of polymers comes from rotation of single 

bonds in the backbone
Typically C-C bonds

• Steric repulsions cause the rotation to be hindered, with 
three staggered conformations energetically favored

Gauche (G), trans (T) and gauche' (G')

Calculation of the average shape of a flexible polymer chain, 
including all bonding details, is demanding

• The oversimplified model can be modified to describe the 
shape of real polymer molecules in statistical terms 
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• Freely jointed polymer moving by random walk in solution
Polymer solution concentration in a good solvent must be small 
enough so the polymer does not interact with itself or another 
polymer

• Multiple steps for polymer to get to one conformation
• Vector connecting one end of the polymer to the other

Vector r is also the sum of N jump vectors li

Random Walk
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Random Walk
• For each jump, the polymer has an equal probability of 

moving in any direction
The vectors cancel when averaged

• The average square end-to-end distance is directly 
proportional to N

All of the cross products cancel

l is the persistence length, depends on rigidity of polymer
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Random Walk
• Probability of the vector r

A gaussian shape is seen when N>>1

• Probability of the vector r in three directions

• Relation of random walk to the Fick’s second law of 
diffusion:
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Free Energy of Random Walk
• From statistical mechanics:

• Therefore:

• Negligible enthalpy: no interactions within or between 
polymer molecules

• Since:

• Therefore:
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Self-avoiding Walks

• Concentration (c) of polymer solution is great enough there 
are interactions either within a polymer chain or between 
chains

Interaction causes a penalty in energy (υ)

• Have interactions: must consider enthalpy as well as 
entropy

3

3
4 r

Nc
⋅

=
π

( )
3

2

0

32

3
4 r

Nrdrc
Tk

U r

B ⋅
== ∫

π
υυ



Free Energy of Self-avoiding Walk

• When υ > 0: good solvent or SAW
• The solvent wants to be homogeneously mixed causing 

swelling of the chains.
• Minimize F with respect to R to get the Flory exponent in 

good solvent, which is close to the numerical value
• Fen: from entropy
• Fex: from excluded volume 
• From random walk:

• Using the Flory argument: 
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Values of r

• When υ > 0 the chain is in a good solvent in SAW 

• When υ < 0 the chain is in a bad solvent: the structure 
collapses

This situation has free energy with three terms

• When υ = 0 the chain is a random walk, because there are 
no interactions
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Polymer Solution: what is v in solutions?
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semi-dilute: overlapping of blobs:

Inside the blobs chains are SAW 
or swollen

For lengths larger than blobs chains 
are RW of blobs

Semidilute Solutions



Polymer melt state: Mean Field

Degree of incompatibility: v is reduced by N then ideal chains if N1=N
Expansion of F(R) for R~Ro (1 + 4z/3 + … )      z~ v N1/2/b3

(from Flory at R=Ro)   then if v~ 1/N1 then z ~ N1/2/N1

Free energy of mixing
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Copolymers

• Covalently linked repeat 
units with different 
chemistries into the same 
polymer chain

• Combining existing 
monomers is more 
financially feasible than 
inventing new monomers 

• The copolymer retains 
properties of both 
constituent repeat groups



Copolymer Sequence Distributions

Random copolymer

Block copolymer

Gradient copolymer

• ABS: acrylonitrile, 
butadiene, styrene

• SBS: styrene-butadiene-
styrene

• Controlled polymerization 
varies composition along 
the chain



Copolymer sequence distributions

Diblock copolymer

Gradient copolymer

Random copolymer

g(n) = the average composition of repeat unit A 
along the backbone of the chain

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

diblock
linear 
gradient
random

g(n)

n/N



Theory

Polymers have a high 
coordination number

Mean field theory is accurate 
when fluctuations are not 

important

There are many possible sequence distributions and monomers to 
choose from when designing new polymeric materials

Use theory to explore different copolymer sequence distributions
Ordering in the melt
Interfacial behavior
Ordering in blends

Theory can be used to explore the parameter space and guide the 
design process



Microphase separation: block copolymers

Two incompatible segments are 
covalently linked

Phase separation occurs 
microscopically above (χN)c

Geometry determined by f

Size determined by balance 
between repulsion and stretching

Lamellar

Lamellar

Gyroid

Gyroid

Hexagonal cylinders BCC spheres

CylCyl

Sph Sph

CPS CPS

NA, f NB, 1−f
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Scattering function
The scattering function measures composition 

fluctuations in the disordered phase

Scattering peak forms at Lc from 
disordered periodic fluctuations 

Scattering increases with χN
At (χN)c: transition to ordered phase
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Inverse scattering function

S-1(x) = 0 at (χN)c, Lc

29.3λ=1 linear

17.9λ=0.5 tanh

13.9λ=0.5 linear

10.5λ=0 linear

(χN)cCopolymer

Higher order-disorder 
transition may be useful in 
applications where phase 

separation needs to be 
suppressed



Lamellar CylCyl

Sph Sph

CPS CPS

Lamellar phase separated region
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Lamellar microphases
Block copolymer Gradient copolymer

L =  wavelength of the composition fluctuation
=  repeat distance of the lamellar layers



Self-consistent mean field theory
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Volume fraction profiles
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• Weakly segregated layers just 
above (χN)c = 10.5

• Layers quickly become strongly 
segregated
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Microemulsions
Oil and water can be made miscible by adding a surfactant

oilwater
+
oil

water
+

T

2φ

BµE
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oil in 
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oil water
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A-B copolymer

A B

φH

T

φH

T

lamellar

2φ

disordered
BµE

Polymeric microemulsions

T disordered

lamellar

LP
2φ

TODT

Tctheory

experiment

Bates et al. Phys. Rev Lett. 79 849 (1997)

Bicontinuous microemulsion
PE-PEP + PE + PEP



The more flexible PBO 
component induces a 

spontaneous curvature 
toward the PBO domains

Asymmetric microemulsions

Zhou, Lodge, Bates, J. Phys. Chem. B. 110 3979 (2006)

Poly(ethylene-propylene) and Poly(butylene oxide)
PEP-PBO + PEP + PBO

Hexagonal 
cylinders

PBO

PEP

Can a spherical micellar 
microemulsion form?



Three component system

Copolymer segregates to the interface

Preferred interfacial curvature changes 
as copolymer accumulates

C AB A

χbc < 0
fb < 0.5
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Copolymer sequence distributions

fb = 0.2 to 0.4

χbcNcb = 0 to −6 



Experimental system

CHCH2

OH
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Copolymer sequence distributions

Hydrogen 
bonding Copolymer synthesis

• Anionic polymerization of PS
• NM-CRP of PS-r-PAS
• Hydrolysis to PS-b-(PS-r-PHS)

N

CHCH2 )n(



C AB A

Swollen micellesInverse swollen micelles Flat interface

A
A

B
C

C
B

A
A

When the curvature changes, swollen micelles can “pinch off” from the interface 
to accommodate the preferred curvature and maximize B-C contacts

Curved interfaces

Spherical microemulsions

• Short amphiphiles: Molecular dynamics
• Polymers: Self-consistent mean field theory



C2A2 A8B2

Short amphiphiles

Short amphiphilic
chain of 10 units with 

fb = 0.2: 
A8B2

Short 2-unit solvents: 
A2 and C2

C2A2 A8B2

Swollen micelles 
form in the A2 matrix



C2

A2

A8B2

φcop = 9.3%     χabNcop ≈ 30

MD – Swollen micelles



C2A2 A4B2

Inverse swollen micelles

Shorter amphiphilic
chain of 6 units with 

fb = 0.33: 
A4B2

Short 2-unit solvents: 
A2 and C2

C2A2 A4B2

Inverse swollen 
micelles form in the 

C2 matrix



C2

A2

A4B2

φcop = 7.5%   χabNcop ≈ 20

MD – Inverse swollen micelles



C > 0
Swollen micelles

C-centered

C < 0
Inverse swollen micelles

A-centered

C = 0
Flat interface

C AB A A
A

B
C

C
B

A
A

Find the equilibrium curvature as fb and χbc are varied

Polymers



∑ +=
i

xsii FnenergyFree µ
Fxs

R

µc < µcmc

µc = µcmc

0

Excess free energy = 0 at 
chemical potential of 

micelle formation 

Find µcmc where Fxs = 0 for a given R

Matsen, M.W. J. Chem. Phys. 110 4658 (1999)

Self-consistent mean field theory

• Numerical solution to the modified diffusion equation
• Use spherical or planar geometry
• Find volume fraction profiles of each polymer
• Equilibrium when the chemical potential of each component is uniform
• Find copolymer chemical potential where Fxs = 0



• Fix the radius of the interface
• Solve the equations between 

Ri-∆R and Ri+∆R
• Use spherical or planar 

geometry
• At each radius find µcmc

Equilibrium radius

AC B A

∆R∆R Ri

r



• Fix the radius of the interface
• Solve the equations between 

Ri-∆R and Ri+∆R
• Use spherical or planar 

geometry
• At each radius find µcmc

C > 0
C-centered

C < 0
A-centered
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χbcNcb = −6

χbcNcb = −4.5

χbcNcb = −3

χbcNcb = −1.5

χbcNcb = 0

fb = Ncb/Ncop = 0.3

Ncop = Nha = Nhc

Equilibrium curvature
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χabNcop = χacNcop = 40

Swollen 
micelles

C > 0

Inverse 
swollen 
micelles

C < 0
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Curvature inverts by
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Polymer-metal nanocomposites
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C
nano-

particle

A nanoparticle can be encapsulated 
in the center of a swollen micelle

Choose a particle that has attractive 
interactions with the C homopolymer



Future directions: Copolymers in liquids

SCFT works well for concentrated polymer solutions

water

copolymer

oil

Important to use aqueous systems for drug delivery
Can use polymers in many applications where surfactants are used



Summary

I. Phase segregation in gradient copolymer melts
RPA  – gradient copolymers have higher order-disorder 

transitions than block copolymers
SCFT – gradient copolymers have weakly segregated 

lamellar layers even at high χN

II. Interfacial behavior of block, random, and gradient copolymers
SCFT and interfacial experiments show that gradient 
copolymers exhibit intermediate interfacial behavior

III. Interfacial curvature of diblock copolymer monolayers
SCFT – predicts the formation of spherical micellar

microemulsions
Can use results as a guide when designing future 
interfacial segregation experiments
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