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Overview
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Background on
The Senses

Background on senses.

Mechanosensation, in
particular.

Hypothesized mechanisms.
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lon-Channels

lon distributions in cells.*

* Transient ion

permeability in cells. ?
lon channels.

(Sukharev et al.)
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Mechanosensitive

Channels

Mechanosensation in
bacteria.

Experimental background:
structural biology and
electrophysiology.

Elastic theory of tension
gating.

Contact with experiment!




Life and the Senses

+ Living organisms are full of
sensors, some of which we are
conscious of, others of which we
are not.

+ Obvious examples —touch,
hearing, vision, taste, smell

¢+ Less obvious —sharks and the
ampullae of Lorenzini — electrical

detection.
+ Sensors from pH to temperature to
=sugar. A,

e




Ubiquitous Phenomenon of

Touch sensation
In worm

+ The main point:
mechanosensation
IS everywhere.

+ Informational
currency is
electrical —
detection Is
mechanical.

+ Repetition of same
motif — mechanical
excitation results
in transient flow of Mechanical

ions. response of hair
cells



Generic ldea: Mechanical

*+ The ideais the coupling of the
mechanical motions of a “detector” to it
the gating of an ion channel. )

* |lon channel —transmembrane protein
that opens transiently to permit
selective flow of ions. (more later)

+ Multiple examples in both eucaryotes
and prokaryotes.

+ Molecular mechanisms in most cases
are purely speculative!

» This Talk: We exploit a knowledge of e
structure and electrophysiology for
bacterial mechanosensitive channel
to examine molecular mechanism of mm— e ——
mechanosensation. R

Extracellular anchor

Extracellular link

Intracellular link

(Gillespie and Walker)



Reminder on lon Distribution

+ Cells divided into a number of

v

membrane-bound compartments.

Concentrations in different
compartments can be orders of
magnitude different.

Proteins (lon channels, transporters)

Membrane proteins central to huge
range of processes — cell signaling,
nerve impulses, nutrient transport, .
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+ The Standard Cell: “Not
everyone is mindful of it, but cell
biologists have two cells of
Interest; the one they are
studying and Escherichia coli.”

— Schaechter et al.
+ 20-40% of the protein stockpile r( - }/\/\/
consists of integral membrane \ J

proteins. An estimate: roughly
500 copies each of 1000

different membrane proteins. %2 2 microns
of the cell surface area is \{ @
dedicated to these proteins. 6 5107

Not a full census: ignored - A\ %
lipopolysaccharides, 2x10° 5x10°bp
peptidoglycan, etc.. —that is

fun too!




lon Channels and Transient

+ Channels open in

response to a

variety of different
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How We Know: Structural

¢+ Some famous examples of lon channels studied by structural
biologists. -

Nicotinic
acetylcholine
receptor
EM & X Ray structures
oS
L
ﬁ% " %

(Unwin et al.)



How We Know: Patch Clampinc

+ The idea: grab a patch of
membrane and apply a
potential difference to
measure the currents.

+ Fraction of time spent open
depends upon magnitude of
driving force.

(Sukharev et al.)
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PA currents lasting several
milliseconds.



Mechanosensitive Channels as

+ Hierarchy of mechanically-gated

channels.

+ Properties of channel have been
Investigated using electrophysiology.

+ Gating tension of MscL serves to avoid

membrane rupture.

Initial volume = 1 nl

0.125 M

Final v

lume =2 nl

0.125 M

l Mambrane
breakdown
MscL
‘L T Th== o= e v el +
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Courram Oipinion in Structural Bology

(Perozo and Rees)



Conformational Change During

+ Hypothesized structural
pathway for opening the Loops S

channel. Tilting of alpha — ¥ W
helices and corresponding
opening of the pore.

+ Key Question: How does
mechanical tension couple to
the conformational change?

+ What are the energetic
consequences to the
surrounding membrane as a
result of channel opening?

(Sukharev et al.)



Lipid Bilayers

polar
hydrophilic
. . head |
& water o
Hydrophobic tails and polar head L 00000000000 0008l |srosnani
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+ Favorable for lipids to waommoni| |2 |2
spontaneously assemble to form
bilayers.
| -
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(Avanti Polar Lipids)

Molecular Continuum



transmembrane proteins!

Purple Membrane

ML/Mp

Purple Membrane

Biophysics Group UIUC

+ Real biological membranes contain many different lipids &

Human
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Experlmental Challenges for

a wrﬂwmm 100
| pPA L

100 ms

- - PCW?
+ Gating tension depends upon the length of . ¢
the lipid tails. .

“_“——N—-h_ﬁ__|mmmm
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(Avanti Polar Lipids)

* Free energy cost associated with mismatch
between thickness of protein and lipids.

T20 0 20 40 B0 80 100
mm Hg

(Perozo et al.)



A Simple Elastic Model: Membrane-

*+ Presence of ion channel deforms the surrounding membrane — free

energy cost.
*+ Opening of channel leads to reduction in potential energy of

loading device — that is an energy benefit.
Channel gating and the membrane free energy.

\

\

w u(x
(A) ~ (B) ©

Channel gating and the loading device.




The Membrane Free Enerc

+ The idea: solve boundary problem for protein embedded in
membrane (Huang, Andersen and others).

+ We use elasticity theory and can thereby compute the energy as a
function of protein shape.

Bending: F — / dQO' (ch [S 00]2 + Kc;G)
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The Overall Free

+ Round up the usual suspects — minimization by Euler-Lagrange,
find the profile, compute the energy.

K, [ d? Ko [
. Glu(z)] = Qb /R (EZ)Qda:—I— = 2/R w(z)2d .

bendingvenergy thickness mismatch

A= >4

G4 = —arR?



Dissecting the Free Enerc

Applied Tension Hydrophobic mismatch Midplane Bending

5 W
éﬁ <= --»54-- = 2

Gp=—aA Gu=3iK;U?C Gp=2i/aKgH?C

Spontaneous Curvature

Ge, = Kp(CoH' + CoU")C

Conclusion: Competition between terms with different radial character!
Line Tension & Applied Tension



An Effective Potential For

+ Elastic deformation of the membrane is induced by channel.

*+ Thickness mismatch leads to a line tension which works against
applied tension

+ Effective potential analogous to a nucleation problem. .

Effective potential for channel radius Qj«

AL

steric
constraint

Gy =/ 2nR — anR? =0

A

steric
{ = line tension f > 0 constraint
e = applied tension

Gy

>R

Y -
IMCTrCASINE ap I}].lﬁ 1 tension




Dissecting the Free Energy:

Hydrophobic mismatch

Gu — %Kefo2C

+ Can tune the hydrophobic mismatch two ways: change the lipids
or mutate the protein.



* The idea: ion channels (such as

4

for K) are gated by voltage.
Structural biologists have made
huge progress, but their
successes have left a wake of
paradoxes.

RP opinion: careless in
treatment of membrane!
Membrane mechanics
distinguishes them.

a Conventional model

b New model

(Mackinnon et al.)




+ Different models have different consequences such as dependence
on tension and lipid tail length.

(A) (B)
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Flirting with a Simple Model of Voltage

+ Same logic — write free energy which reflects response of
channel AND surrounding membrane.

K h//2
Gmembranelh(2)] = 2b (1+ h/2)3dx ‘I‘f)é/(\/ 14+ h'? — 1)d:CJ

bending energy tension

Gprotein = pEcost

How gating depends upon
voltage, tension (1), lipid
character, etc... Testable! Two
- models have different

trial solution consequences.

v




Concluding Perspective

(Gillespie and Walker) Mechanosensitive Channels

*+ Mechanosensation in bacteria a proving
ground.

* Membrane free energy a key player in
dictating state of channel gating.

* Experimental predictions: lipid length,
spontaneous curvature, protein
mutations, lifetimes, other channels.

Fe
oY

Membrane Proteins and Single Molecule
Biophysics

*+ Single molecule census — lots of membrane
proteins.

(Mackinnon et al.)

extracellular - | ’ )

infracedlulal

i I i y o ( \ £4-85 linkar
* Membrane proteins mediate the senses 208 TRMLL2



Experimental Consequences of

Model: Spontaneous Curvature

(Perozo et al.)
+ Gating tension depends upon

concentration of curvature inducing a
lipids. * N g‘;?g
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Model Predictions

I
¢+ Spontaneous curvature can induce negative line tension!

Effective potential for channel radius

Curvature
Inducing
Lipid

Meutral
Lipid

Gy=/2nR-onR?> [ <0

= line tension
o = applied tension

A

No stable closed state! ST

"

increasing applied tension

¢ Large spontaneous curvature can generically destabilize closed state.

+ Precisely this effect has been observed by Perozo et al.



Other Consequences:
Mechanosensitivity and Other

+ Conformational change in channel perturbs membrane.

(Rees et al.)
@ _ (b)

(Mackinnon et al.)

4 - > T
r h W | 54-55 linkar g
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Corent Opinian in Structural Biclagy

¢* MscS and KvAP: coupling of voltage sensitivity and
mechanosensitivity. Speculative but very interesting/fun!



Concludina Perspective

(Gillespie and Walker) Mechanosensitive Channels

*+ Mechanosensation in bacteria a proving
ground.

* Membrane free energy a key player in
dictating state of channel gating.

* Experimental predictions: lipid length,
spontaneous curvature, protein
mutations, lifetimes, other channels.

*+ Question of substates — need insights
into channel free energy

Mechanosensation (Mackinnon et al.)
Intriguing problems in biological physics & “7} & b a‘ﬁ -
having to do with mechanotransduction. . E s ’8 3% B %%tf‘
g i“ - "!jﬁgei; U
Coarse-grained mechanical description is 'U x‘ . %u‘* — —

needed.

voitage paddia



Physics of Mechanosensation

Protein Conformational Energy
+ Energy scale due to membrane G,

deformations is comparable to
measured free energy of gating.

+ We expect Protein Free energy to
be very degenerate. Protein

Conformation

i

G:GM —f—Gp

+ Assumptions generically predict
short lived substates.

+ Degeneracy is broken by the
effective potential from membrane
Interaction.

+ Membrane is NOT a passive

R Re B Rwo Ro X observer in the gating of channel.

steric constraint
steric constraint




Coarse-Grained Descriptions of

I

+ Description of biological
structures can be undertaken
from a variety of different
perspectives.

+ Two key ways of viewing
structure are ribbon diagrams
and all-atom descriptions.




SCL ahn SC

+ Structure of MscL
captured in the closed
state. (Homopentamer)
Notice structural role of
transmembrane alpha
helices.

+ MscS captured in the
open state.

(Rees et al.)
(b)

Cytoplasmic side

Corent Opinian in Structural Biclagy

MscL MscS



+ Electrophysiology

measurements (patch
clamping) lead to current
VS membrane tension.
Measurements reveal
five distinct conductance mmwm| Y N
substates.

E{ w1 T 1‘_':5';5_.m-u1_ FY T

R — ';'.. !
..{-|.|.|!. L I-l

(Sukharev et al.)



Ear Structure and Function: lon

) ol ¢+ Collective response of
| ey Sewua Tecow multiple detectors

driving multiple
channels.

(Cochlear function.)




Richness of Dynamics: Adaptation

+ Hair cells exhibit
nonlinear response —

they adapt to stimulus.

+ Relevant molecular
participants are as yet
! unknown.

supporting cell

auditory
hair cells

tectorial membrane

(Muller and Littlewood-Evans)
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Mechanosensitive Channel of

Large Conductance (MscL)

+ Bacterial channel serves as an emergency relief valve to
respond to osmotic shock.

+ Structure of the channel is crystallography in the closed state
(Doug Rees).

MscL Channel (Closed)

~__ Bilayer Membrane

Initial volume = 1 nl Final volume = 2 nl Open channel

/ current

Mscl Channel {Open)
(Matthews)



Physics of Mechanotransduction

v &

Membrane-Protein interaction generically leads to a two-well potential!
lon channel gating has the character of a bistable switch.

Depending upon the magnitude of the applied tension, either the closed
or open state is stabilized.

Membrane is NOT a passive observer in the gating of channel.

State
] ] Radius (R) , ; )
Bistable switch A Phase" Diagram

Closed state Open state Open
G A State

Closed
State

low high o
Applied Tension (w)



xperimental Predictions

- . .. Opening Free Energy versus Bilayer Thickness
+ Critical tension depends upon lipid S i Y _

length. .
¢ Curvature inducing lipids can 2
change the sign of the effective line g s
tension — stabilizing open state. 3,
+ Amino acid substitutions that tune 3
the hydrophobic width of the o
channel alter gating tension in a e R B8 =

systematic fashion.

" . n Acyl Chain Length



Protein Boundary Value Problem

+ Minimize free energy — Euler-Lagrange equations for midplane
position (h) and thickness (2u).

+ Solve equations, match BC’s, & compute deformation energy

[KpV* —aV2+ 4lu=0 [KpV?2—alh=0

A Z Hydrophilic

Bilayer Parameters:

2a = Thickness

Kp = Bending Modulus

K4 = Thickness Deformation Modulus
C = Spontaneous Curvature

bilayer inclusion

Inclusion geometry:
R = Radius
W = Thickness

» I
B = Interface Angle

R >R
cylindrically symmetric

Hydrophohic



