introduction to nanoelectromechanical systems

Michael Roukes Kavli Nanoscience Institute Physics, Applied Physics, & Bioengineering California Institute of Technology

1

Lectures

The two key attributes for sensing:

responsivity

metric quantifying *transduction* (conversion between signal domains; generalization of "gain")

noise

imposes minimum detectable signal level; each element of a system degrades the overall SNR (signal-to-noise ratio).

(c) Caltech, 2006

Lectures

PASI 2006 - Bariloche, Argentina

Page 10 of 28

Future proteomics						
Toward single-molecule mass spectrometry						
(}) kai	Roukes Group: Dr. Wayne Hiebert (NINT), Selim Hanay, Dr. Philip Feng, Mo Li, Ben Gudlewski, Dr. Akshay Naik (11/1/06)	Caltech				
	Prof. Kamil Ekinci	Boston U.				
	Prof. Milan Mrksich	U. Chicago				
	Prof. Stephen Quake	Stanford U.				

mass spectrometry and proteomics

"At present there is no other technology visible that can rival the speed, sensitivity, and exact molecular characterization of MS methods of protein characterization". Perspectives for Mass Spectrometry and Functional Proteomics, J. Godovac-Zimmermann, and L. R. Brown, Mass Spectrometry Reviews, 20, 1-57 (2001).

"Realistically, we probably need (sensitivity) to be down to the level of about 10 copies per cell on the assumption that if you have 10 copies in a cell, they're actually doing something of note.

> Brian T. Chait, Director, Mass Spectrometry and Gaseous Ion Chemistry Lab, Rockefeller University (2001)

"MS-based proteomics is still an emerging technology where revolutionary change is ... Recent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for molecular and cellular biology and for the emerging field of systems biology... The ability of mass spectrometry to identify and, increasingly, to precisely quantify thousands of proteins from complex samples can be expected to impact broadly on biology and medicine...

Mass Spectrometry-Based Proteomics, Ruedi Aebersold and Matthias Mann, Nature 422, 198-207 (2003).

Page 13 of 28

PASI 2006 - Bariloche, Argentina

W

d V

a

d

ur independent	Disorder	VOC source-	VOC Target
idies have recently	Universy teact infection	urine	izovalatic acid, alkanaz
own that vanor	Aerobic gram-negative bacteria	intra-perborned fluid	tespenez, letomaz
	Asserobic Insciental Infections	intra-peritorneal fluid	acetic, lastyric acid
ase screening	Bacterial vaginosis	vaginal cavity and discharge	anines
hnology can reveal	Breast cancer	human breath, lung air	2,3-dimethyl-pantane, 2-methyl-pantane, 3-methyl-pentane
npounds (VOCs) on	Lung cancer	human breath, lung air	alcanez, mono-methylated alcanez, aniline, o-toluidine
tionts' broath that	Acute asterna	human breath	pentana
	Metabolic disorders	wine	isovaleric acid
biomarkers for	H epartic correc	alvaslar air	muliyi-mercajaan
g cancer.	R.heumatoid atkritis	alveular air	pentana
lung cancer, as	Schizophrenia	alveolar air	pentane, carbon diaulphide
Las for other	Ketoeis	alveolar air	acstane
	Cardiop ulmonary disease	alveolar air	acetone, ethanol
eases, specific Cs can thus be	Hepatic encephalopathy	bloot plasma, cerebrospinal: fluid	3-methylbutanel
rolated with and	Uramia	breath, urina	dimatkylamino, trimatkylamino
indicative of,	Trimabylamiruria	lareath, urine, sweat, vaginat diacharge	trimetkylamine
ease conditions not	Ciabetex mellitox	lungair, urine	andone
cont in boolthy	Larynx can car	breath	C ₂ to C ₈ alipitatic acids
ient controls.	Dyagausia/Dysosnia	lungair	hydrogen sulfide, methyl mercaptan, pyridine, aniline, diphenylamine, dodecanol
	Cyslinuria	breath	cadaretina, piperidina, putrescina, pyriolidina
ble 1. Summary of	Cinhosis	breath	acetic acid, propionic acid, isolutyric acid, butyric acid, isovalenic acid, carbon diaulohido
e main volatile organic	Histidinemia	breath	2-imidazolegyovic acid, 2-imidazolegatic acid, 2-imidazolelactic acid
sociated with different	Tyraainemia	breath	p-hydroxyphenylpyruvic acid
ease types, as analyzed	Phenylletonuria	breath	phenylpyravic acid, phenyllastic acid, phenylastic acid
CC linked with mass	Maple ayrup urine disease	loweathr	2-oroizoosproic acid
ectrometry (GC-MS)	H alitosia	mouth air	hydrogen sulfide, methyl mercaptan, cadarerine,
cenomeny (dc-wb).	Vaginal turner	vaginal cavity	putzencine, indole, skatole Cz toCz aliptratic acids

Array signal processing yields biomarker identification

- Processing algorithms of sensor array response (e.g., principal component analysis) maps data into "analyte identification space".
- Severin, Lewis et al.:
- An array of 20 chemiresistor sensors were used to resolve a generic, homologous series of VOCs, into individual species and binary mixtures.
- Individual analytes can be distinguished using principal component analysis (PCA).

<u>Concentration performance:</u> Analyte sticking probability determines sensitivity (in ppb)

<u>Note:</u> For concentration sensing, the appropriate metric for crosscomparison between <u>bare</u> (uncoated) sensing devices is their "areal" mass sensitivity, with typical units <u>upp/cm</u>. Conversion of this areal mass sensitivity into a concentration sensitivity (*e.g.*, in "ppb") is possible only by defining both the specific analyte to be measured and the specific polymer layer for its chemisorption onto the sensor.

Analysis: Caltech Chemisorptive NEMS Sensor Element

Descriptive Analysis:*

- Physics determines the collision rate of a rare analyte (e.g. CWA) with the sensor's surface.
- The analyte's sticking probability, *s*', determines whether or not it chemisorbs.
- The current class of optimal polymer coatings employed yield *s*[']~1 for CWAs.

<u>Concentration performance:</u> Analyte sticking probability determines sensitivity (in ppb)

Note: For concentration sensing, the appropriate metric for crosscomparison between <u>bare</u> (uncoated) sensing devices is their "areal" mass sensitivity, with typical units **approximit** Conversion of this areal mass sensitivity into a concentration sensitivity (*e.g.*, in "ppb") is possible only by defining both the specific analyte to be measured <u>and</u> the specific polymer layer for its chemisorption onto the sensor.

Analysis: Caltech Chemisorptive NEMS Sensor Element

Concentration Demo Setup DKAP-coated NEMS sensor Measurement setup for NEMS based detection of calibrated concentrations of CWAs

A polymer-coated ~4.3 MHz nanocantilever resonato is housed in a microchamber fixture. Calibrated ppb scale concentrations of DMMP analyte in nitrogen carrier gas are delivered to the fixture inlet. The DMMP analyte is generated by a calibrated industry-standard gas permeation chamber, and is mixed with a N₂ carrie gas stream delivered by an electronic flow controller

Current gas flow chamber limits sensitivity

- Gas concentration in 50-µL chamber not uniform during pulse
- · Large volume and irregular flow spreads GC peaks and reduces effective concentration at sensor

Page 20 of 28

		NE	NEMS gas sensors are now the	
NEMS Cantilever	M. L. Roukes Caltech	20 ppb	2 ppb	Achieved in MGA Y1
MEMS RF Ion Mobility Spectrometer	R. Miller Draper Lab	90 ppb	N/A	2000 Hilton Head Island
CMOS Cantilever	M. Zaghloul <i>GWU</i>	720 ppb	20 ррb	IEEE Sensors Journal 5,641 (2005)
DNA decorated Nanotube	A. T. Johnson <i>U. Penn</i>	25 ppm	1 ppm	Nano Letter 5, 1774 (2005)
Tin Dioxide Nanobelt	Z. Wang Ga. Tech	53 ppb	N/A	Appl. Phys. Lett 86, 063101 (2005)
Chemiresistor	N. S. Lewis Caltech	1 ppm	6~30 ppb	Anal Chem 73, 884 (2001)
Surface Acoustic Wave (SAW)	Jay W. Grate Pacific Northwest National Lab	1-2 ppm	1 ppb	Chem. Mater. 9, 1201 (1997)
Nanotube chemicapacitor	E. S. Snow Naval Research Lab	320 ppb	0.5 ppb	Science 307, 1942 (2005)
Detection Method	Group	Demonstrated detected DMMP concentration	MDL (noise floor)	Reference

NEMS vs. Competing Microscale Gas Sensors

In progress: nanoliter-scale chamber

- Microchannel chamber with 15 nanoliter volume (developed by Sandia) mounts directly onto NEMS chip
- We expect 2-3 orders of magnitude improvement in sensitivity

Value of NEMS-Enabled MGAs

• NEMS are an enabler for next-generation, portable vapor-phase sensing:

currently provide sensitivity that matches/exceeds state-of-the-art operate at power levels ~X100 lower than SAW/FPW sensors sensor footprint is a <u>million times smaller</u>.

Ultracompact, multiple-element averaging (to improve sensitivity) Small-footprint, highly-multiplexed sensor systems Robust, validated, multiplexel top-down fabrication on masse

• Still significant further opportunity for improvement

NEMS sensor technology is in its infancy Advances are being made rapidly Significant further improvements possible:

ganged sensors (for X3-X4 concentration sensitivity increase) thinner sensors (for X3 concentration sensitivity increase) improved frequency-shift readout (X10 sensitivity increase possible)

ese should yield <100 ppt without preconcentrat i.e. <10 ppq with X10K preconcentration.

BioNEMS inspiration: single-molecule biophysics

Optical Tweezers e.g. Chu, Block, Bustamante, ...

AFM-based (Force Spectroscopy) e.g. Hansma, Gaub, Fernandez, ...

Nature of Interaction	Interaction Force	
Receptor/Ligand Interaction	50-250pN	
Avidin-Biotin	90–260 pN	
Antibody-Antigen	50-300pN	
Cadherin-Cadherin	35-55pN	
DNA Hybridization	65pN-1.5nN	
Chemical Bond	1-10nN	
Covalent(C-C, C-O, C-N)	4.0-4.5nN	
Covalent (Au-S, Si-C)	1-3nN	
H-bond	10pN	
Unfolding Forces	100-300pN	
Protein (Titin) unfolding	150-300pN	
Dextran bond twists	100-300pN	

Page 23 of 28

Page 25 of 28

PASI 2006 - Bariloche, Argentina

Lectures

