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Some perspective to introduce the talk

Newton
Maxwell
Boltzmann

Carnot: beginning of Thermodynamics

A side comment
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Maxwell
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Boltzmann

“l am convinced that these attacks are merely based on

a misunderstanding and that the role of molecular gas theory
has not yet been played out... In my opinion it would be a
great tragedy for science if the theory of gases were thrown
into oblivion because of a momentary hostile attitude toward it,
as it was for example the wave theory of light because of
Newton's authority”

L. Boltzmann “Lectures on Gas Theory”
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Beginning of Thermodynamics
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The idea of Carnot
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Carnot’'s Theorem

Macchina termica reale Macchina termica “perfetta’

The efficiency of any thermal engine only depends on the
temperatures of the two thermostates !!!
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Why theorems are important

Let N be the set of natural numbers 1,2,3,....
Question: Find the greatest natural number.

Suppose N is the solution.
If N#1 then N> > N, so N # 1 can not be the solution.
Then N =1 is the solution

Answer: N =1 is the greatest natural number.
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Outline: Naive look/More detailed look

Some history-main applications
Main ideia of KL decomposition
The mathematical problem
Construction of the KL basis

How to combine KL with Galerkin
Reduced model given by KL
Practical question: how to compute

An example

Different guises of KL; basic ingredients
Karhunen-Loéve expansion: main hypothesis
Karhunen-Loéve Theorem

Basic properties

Applications to Random Mechanics
Examples
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Beginning: works in Statistics and Probability and Spectral Theory
in Hilbert Spaces. Some contributions:
Kosambi (1943)
Loéve (1945)
Karhunen (1946)
Pougachev (1953)
Obukhov (1954)
Applications:
@ Lumley (1967): method applied to Turbulence
@ Sirovich (1987): snapshot method
An important book appeared in 1996: Holmes, Lumley, Berkooz.
In Solid Mechanics the applications started around 1993. In finite
dimension it appears under different guises:
@ Principal Component Analysis (PCA): Statistics and image
processing
@ Empirical orthogonal functions: Oceanography and
Metereology
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Main Applications

Data analysis: Principal Component Analysis (PCA)
Reduced models, through Galerkin approximations

°
°
@ Dynamical Systems: to understand the dynamics
@ Image processing

°

Signal Analysis

Two main purposes:

@ order reduction by projecting high-dimensional data in
lower-dimensional space

o feature extration by revealing relevant but unexpected
structure hidden in the data
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Main idea of KL decomposition

In plain words Key idea of KL is to reduce a large number of
interdependent variables to a much smaller number
of uncorrelated variables while retaining as much as
possible of the variation in the original data.

more precisely Suppose we have an ensemble {uy} of scalar fields,
each being a function defined in (a,b) CR. We
work in a Hilbert space L?((a,b)) .

We want to find a (orthonormal) basis {y,}5_; of
L? that is optimal for the given data set in the sense
that the finite dimensional representation of the form

i) = ¥ av(x)
k=1

describes a typical member of the ensemble better
than representations of the same dimension in any
other basis.

The notion of typical implies the use of an average
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The mathematical problem

Suppose, for simplicity, we have just one function W

E(l<uy>P)
w2

MaXyc 2

This implies

Jw) =E(l<uy> 1) =Alyl* 1)

EJ(V’—FW)\S:O =0

/ny y)dy = Ay(x)

with R(x,y) = E(u(x)u(y))
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Construction of the KL basis

e Construct R(x,y) from the data

@ Solve the eigenvalue problem:

/ny y)dy = Ay(x)

to get the pair (4;,y;)
@ If u is the field then the N-order approximation of it is

le(t,X) - E(u(tvx)) +Z£V:13i(t)ly(x)

@ To make predictions use the Galerkin method taking the y's
as trial functions
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Galerkin projections

Suppose we have a dynamical system governed by

oy = Alv) ve(ab)x2—R"
v(0,x) = w(x) initial condition
B(v) = 0  boundary condition

The Galerkin method is a discretization scheme for PDE based on
separation of variables.
One searches solutions in the form:

00 = Y avilx)
k=1
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Reduced equations

The reduced equation is obtained making the error of the
approximation orthogonal to the first N KL elements of the basis.

errorequation(t,x) = %—A(\?)
errorinicond (x) = ¥(0,x) —vo(x)

< errors,Yi(x) >=0 for i =1,....N.

ity = [LACN ja () wa(x)wi(x)dx  fori=1,..,N
a;(0) = S vo(x)wi(x)dx fori=1,..,N
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Computation of the KL basis: Direct method

In this method, the displacements of a dynamical system are
measured or calculated at N locations and labeled
ur(t,x1),u2(t,x2),...,un(t,xy). Sampling these displacements M
times, we can form the following M x N ensemble matrix:

U1<t1,X1) U2(t1,X2) un(tl,XN)
U:[ul u ... UN}: . . .

ur(tp,x1)  we(tm,x2) ... up(tm,xy)

Thus, the spatial correlation matrix of dimension N x N is formed

as 1
RU:MUTU.

The PO modes are then given by the eigenvectors of R,
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Algoritmo de implementacdao do método direto.
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Snapshot method
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Algoritmo de implementacao do método dos retratos.
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Different guises of KL; basic ingredients

Sets:

o 2CR!

@ Q space of events

@ R" codomain of functions
L?(2,R") is a Hilbert space of functions with inner product <,>g
and associated norm ||.||». The elements of this space are
deterministic functions.
(Q,.7,P) is a probability space, .# is a sigma-algebra and P a
probability measure. @ € Q is an event, that is a realization of a
random function.
The mean value of a random variable X is E(|X|) = o X(z)dP(z)

with
X: Q@ — R~

z — X(2)

Q also has a Hilbert space structure, noted L?(Q,R"), if we put the
inner product <,>q= E(|XY]) and the associated norm is ||.||q
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Basic ingredients of KL

In order to compute KL basis one needs two basic ingredients:

@ a L, space of functions

@ an averaging operator
In the literature we find mainly three main forms of KL
decompositions. To understand their similarities and differences it
is worth to think of the fields as defined in a cartesian product of
two sets, that will provide the main ingredients we just mentioned

X: I2xQ — R”
(z,0) — X(z,0)
We have the following interpretation:

X(z,.) is a random variable, that is, all possible realizations
of a field for fixed z € 2. We need the averaging
operator to do statistics with this random variables,
one for each z € 9.

X(.,) this is a realization of a field, hence a function of
Lo(2,R"). Physical quantities are defined in terms of
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Karhunen-Loéve expansion: main hypothesis

Let us consider a random field {X(z)}.c» defined on a probability
space (Q,.#,P)

X: 2(CRHYxQ — R"
(z; 0) — X(z;0)

Assumption |: {X(z)},c4 is a second-order random field i.e.
E(IX(2)|]?) = E(< X(2),X(z) >) < o,Yz € P

E(.) denotes the ensemble average and j , ; is the inner product in

His.sumption Il: {X(2)},e2 is continuous in quadratic mean i.e.

|X (24 h) X (2)|32qn) — 02 h— 0.
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Under Assumption | and 1l

o Vze€ 9, X(z) € L2(Q,R") (with
<Y1, Y >o= E<< Y1, Yo >))

@ Second order moment characteristics:

mx(z) = E(X(2))
Rx(z1,22) = E(X(21) ® X(22))
Cx(21,22) = E((X(21) — E(X(1))) ® (X(22) — E(X(22))))

@ When the random field is mean zero valued, then Cx = Rx.
We will assume in the sequel that {X(z)},c» is a mean zero
valued field.

@ The correlation function Cx is continuous on 2 x 9.
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The self-adjoint operator

According to our assumptions, the integral operator,
Q: L>(2,R") — L%(2,R"
v = @@= [ Glad)vE)d.

with kernel Cx(z,Zz’), defines a continuous self-adjoint
Hilbert-Schmidt operator on the Hilbert space L%(2,R").

Rubens Sampaio On the Karhunen-Loéve basis



Eigenvalues property:

The operator Q has a countable number of eigenvalues
M> > >,
i.e.
(Q¥n)(2) = Anyin(2)
where
ll/l,... ’llln’...,
denote the associated eigenfunctions.

The set of eigenfunctions constitutes a orthonormal basis of
L*(2,R")

< Yn, Y >@:/ < Yn(2),¥m(z) > dz = 8um
-(Z

where <,> denotes the inner product in L?(2,R") with the
associated norm ||.

9.
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Karhunen-Loeve Theorem

The Karhunen-Loéve theorem states that a continuous
second-order random field can be expanded in a series of the
eigenfunctions, y,, as

i z) (in L2(Q,R"))

where &1,&>,--+,&,,- -+ are scalar uncorrelated random variables
defined by

&= [ < X(@)um(z) > dz

with
A if n=m

E(GnEm) = AnSom = { 0 if n#m

The {yk} are named the KL modes ( also, Principal Orthogonal
modes, POM).
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Energy property

The eigenvalues, A,, of Q are related to the mean “energy” of the
random field according to the following relation

oo

E(IXI2 ~,) = Z

n=1
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Optimality property

The Karhunen-Logve expansion satisfies the following optimality
property:

E(|[X - Z@klllk )5 <E(IX - Zﬁkll/k )%

for any integer g and any arbitrary orthogonal basis (Wk)k>1 of
[2(2,R") where &,,&,--- &,--- are scalar random variables
given by

& = /_@ < X(2),yk(z) > dz

It is optimal in the sense that given a fixed number g of modes, no
other linear decomposition can contain as much energy as the KL
expansion.
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Summary: Karhunen-Loeve Theorem

{X(2)};co defined on a probability space (Q,.%, P)
Covariance matrix function Cx(z1,22)

X(z; o) Z )in L2(Q,R")
with
( W eigenfunctions(Ql]/)(z):/ Cx(z,2)y(Z)dZ
9

1 if n=m

/@<l//,,(z)lllm(z)>dz:{ 0 if ntm in L2(2,R™)

En:  scalar random variables &, (o) :/ < X(z,0),ym(z) > dz
2

Bt ={ " o
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Applications to Random Mechanics

In random mechanics, the random characteristics have often
modeled using random fields {u(z)},c» where the domain Z is

either 2 = 2, C RP(with p=1,2, or 3) static problems
or D=9 x D CRxRP dynamics problems

Without loss of generality, we assume Z; = [0, T| where T € R+.
In order to find a flow model that still reveals the main features
contained in the dynamics, one often searches for an expansion in
the variables separated form

u(t.) = Y 3 (£)0i(x)
k=1

where ¢ are deterministic R"-valued functions, and {ax(t)}tcq,
are scalar time random processes.
Let us see how to adapt the KL theory to these cases.
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Approach 1

Apply the KL theorem to random field {u(t,x)}t «)co
with covariance matrix function C,(t1,x1,t2,x2)

u(t,x; @) Z )Y, (t,x) in L2(Q,R™)
with
v, eigenfunctions (Qy)(t,x) :/ Cx(t,x, t' , XYy (t,x")dt dx’
9

1 if n=m

_ . 2 n
/@<Wn(t,x)wm(t,x)>dth—{ 0 if nitm in L“(2,R")

En:  scalar random variables &, (o) :/ < X(t,x,®), Yn(t,x) > dtd

Bt ={ o o
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Approach 2

For fixed t € %,
Apply the KL theorem to random field {u(t,x)}xea,
with the covariance matrix function C,(t,x,t,x2)

oo

u(t,x; o) Z En(t, @) Wn(t,x) in L2(Q,R")

with
yn(t,.): eigenfunctions (Qy)(x / Cx(t,x, t,x")y(x")dx

_J 1 if n=m 5,
/ <l;/,,(t,x)l//m(t,x)>dth—{ 0 if ntm inL“(92,

2

En(t,.): scalar random variables &,(t, ®) :/ < X(t,x,0), Ym(t,x
Dx

A if n=m

E(gn(t,-)ém(tv')):{ 0 if n;ﬁm
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Approach 3

L2([0, T] x Q,R") with
-
<Y, Z >p1wa=E(< Y, Z >) with &(.) = T/ E(.)dt.

Apply KL theorem the random field {u(.,x)}xe
with the covariance matrix function %,(x,x’) =

( (x)@u(.,x))

u(x;t, ) Z (t, 0)Wp(x

with
( Yi(.): eigenfunctions(Ql//)(X):/Q Cu(x, XYy (x")dx’

Xl if n=m

/%<l//,,(x)ll/m(x)>dxz{ 0 if nitm in L2(2,,R")

En: scalar random processes &, (t, @) :/ < u(t,x,®)Ym(x) > a
Dx
Ay if o n=m .,
Cg&(&ném) - 0 If n m inL ([07 T] X Q’R)
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Approach 3: discrete case, random process: {u(t)}, 1]

u: [0, T]xQ — R”
(t,w) —  u(t;o)

L2(]0, T] x ©,R") with
.
<Y, Z>0,T|xQ=&(< Y,Z>)with &() = %/ E(.)dt.
0
Covariance matrix €, = &(u(.)u(.)T)

u(t.0) = Y & (),
(y,: eigenvectors G, Y, :7), V8
=10 it nam
En:  scalar random processes &, (t, 0) =< u(t, )Yy, >
8 (Enlm) = { I (0. TIx Q. R)




Some remarks

@ The existence of the Karhunen-Loéve expansion as described
in approach 3 does not require any assumption on stationarity
and ergodicity properties.

@ The Karhunen-Loéve expansion as described in approach 3
usually depends on the time parameter T.

O If the random field {u(t,x)} (¢ x)e2, <, is weakly stationary
with respect to the time variable,
(Cult,x,t',x") = Cy(t—t',x,x")) then approach 2 and
approach 3 give the same results. Moreover, the KL expansion
does not depends on the time parameter T.

Rubens Sampaio On the Karhunen-Loeéve basis



KL modes and Equivalent linear system

Let us consider the discrete nonlinear case: U(t) € R”

MU(t)+ CU(t) + F(U(t)) = Bw(t)

where {w(t)}; is a Gaussian white noise process
{U(t)}: stationary process
Then, the KL modes of the stationary nonlinear response coincide
with the KL modes of the stationary response of the associated
equivalent linear system given by the true stochastic linearization
method:
MU(t) + CU(t) + KeqgU(t) = Bw(t)

where Keq minimizes E((F(U)—KU)T(F(U)—KU))
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How to compute the PO modes?

The techniques to estimate the covariance function of a random
field depends on its properties. If the random field is
non-stationary, there is a general method for estimating its
second-moment characteristics that assumes several realizations of
the random field are available.

If the random field is weakly stationary with respect to the time
variable, there is a method for estimating %, (x1,x2) based on a
single realization of the random field.

Two methods can be used to compute de PO modes:

- Direct method

- Snapshot method
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Figure: Vibro-impact beam

Some results are presented here obtained from simulated data
generated from a mathematical model of a linear clamped beam
impacting a flexible barrier.
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Simulation of the experiment

4 2
Ela w(x,t) —i—pAa w(x,t)

N
ox4 012 :Ff(t)5(X—Xf)+Z Fb(W(Xciat))s(X—Xc,':

i=1
- Ten mode shapes of the associated linear system
10
W(x,t) =Y qi(t)i(x)
i=1
- Galerkin method (10 DOF)

Q-+ 207 Q + [07] @+ Fei(Q) = BF¢(t)

where modal damping were added to the discretized model.
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Comparison between PO modes y; and linear modes ¢;

The first two KLs significantly differs from the first two mode
shapes reflecting the influence of the barrier upon the system.
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Reduced-order model formulation:

From the PO modes y;, we have construct a reduced model.

2*w(x,t) ’w(x,t)
El Iy +pA 312

N
= F¢(t)6 (X*Xf)+;Fb(W(XC,', t))6 (x — xgi)

- n KL modes with (1 < n<10)
W(x,t) =) ai(t)i(x)
i=1
- Galerkin method (n DOF)

A+ 20| A+ Frr(A) = Br Fr(t)

where same modal damping were added to the discretized model.
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This figure presents a comparison between the original and the
reduced-order models constructed with 5 and 10 PO modes.

a0 Comparison between models 10 Comparison between models

0.46 m
0.46 m

Neutral axis displacement at x
Neutral axis displacement at x

00 )
Time (s)

Figure: Dynamic with reduced order modes with 5 and 10 PO modes

The result is clearly not as good as expected and the full
reduced-order model is not yet capable of reproducing the original
response.

A probable explanation for this result is that the use of the modal
damping ratios for the first and second KLMs is inappropriate as
they are physically different.
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Concluding remarks

@ In order to use the KL theory to expand a random field in the
variables separated (time-random variables and spatial
variable), it is necessary to use the adequate spatial
covariance function.

@ The use of the PO modes to develop the reduced-order model
in the presence of damping may not be robust.
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