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Newton
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Maxwell
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Boltzmann
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Beginning of Thermodynamics
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The idea of Carnot
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Carnot’s Theorem
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Why theorems are important

Let N be the set of natural numbers 1,2,3, ....

Question: Find the greatest natural number.

Suppose N is the solution.
If N 6= 1 then N2 > N, so N 6= 1 can not be the solution.
Then N = 1 is the solution

Answer: N = 1 is the greatest natural number.
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Some history

Beginning: works in Statistics and Probability and Spectral Theory
in Hilbert Spaces. Some contributions:

Kosambi (1943)
Loève (1945)
Karhunen (1946)
Pougachev (1953)
Obukhov (1954)

Applications:

Lumley (1967): method applied to Turbulence
Sirovich (1987): snapshot method

An important book appeared in 1996: Holmes, Lumley, Berkooz.
In Solid Mechanics the applications started around 1993. In finite
dimension it appears under different guises:

Principal Component Analysis (PCA): Statistics and image
processing
Empirical orthogonal functions: Oceanography and
Metereology
Factor analysis: Psychology and EconomicsRubens Sampaio On the Karhunen-Loève basis



ERMAC2005-Natal

Main Applications

Data analysis: Principal Component Analysis (PCA)

Reduced models, through Galerkin approximations

Dynamical Systems: to understand the dynamics

Image processing

Signal Analysis

Two main purposes:

order reduction by projecting high-dimensional data in
lower-dimensional space

feature extration by revealing relevant but unexpected
structure hidden in the data
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Main idea of KL decomposition

In plain words Key idea of KL is to reduce a large number of
interdependent variables to a much smaller number
of uncorrelated variables while retaining as much as
possible of the variation in the original data.

more precisely Suppose we have an ensemble {uk} of scalar fields,
each being a function defined in (a,b)⊂ R. We
work in a Hilbert space L2((a,b)) .
We want to find a (orthonormal) basis {ψn}∞

n=1 of
L2 that is optimal for the given data set in the sense
that the finite dimensional representation of the form

û(x) =
∞

∑
k=1

akψk(x)

describes a typical member of the ensemble better
than representations of the same dimension in any
other basis.
The notion of typical implies the use of an average
over the ensemble {uk} and optimality means
maximazing the average normalized projection of u
onto {ψn}∞

n=1 .

Rubens Sampaio On the Karhunen-Loève basis
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The mathematical problem

Suppose, for simplicity, we have just one function ψ

maxψ∈L2

E (|< u,ψ > |2)
‖ψ‖2

This implies

J(ψ) = E (|< u,ψ > |2)−λ (‖ψ‖2−1)

d

ds
J(ψ + εφ)|ε=0 = 0

∫ b

a
R(x ,y)ψ(y)dy = λψ(x)

with R(x ,y) = E (u(x)u(y))
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ERMAC2005-Natal

Construction of the KL basis

Construct R(x,y) from the data

Solve the eigenvalue problem:∫
D

R(x ,y)ψ(y)dy = λψ(x)

to get the pair (λi ,ψi )
If u is the field then the N-order approximation of it is

ûN(t,x) = E (u(t,x))+Σ
N
i=1ai (t)ψ(x)

To make predictions use the Galerkin method taking the ψ’s
as trial functions
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Galerkin projections

Suppose we have a dynamical system governed by

∂v
∂ t = A(v) v ∈ (a,b)×D → Rn

v(0,x) = v0(x) initial condition
B(v) = 0 boundary condition

The Galerkin method is a discretization scheme for PDE based on
separation of variables.
One searches solutions in the form:

v̂(x) =
∞

∑
k=1

akψk(x)
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Reduced equations

The reduced equation is obtained making the error of the
approximation orthogonal to the first N KL elements of the basis.

errorequation(t,x) = ∂ v̂
∂ t −A(v̂)

errorinicond(x) = v̂(0,x)−v0(x)

< errors,ψi (x) >= 0 for i = 1, ...,N.

dai
dt (t) =

∫
D A(ΣN

n=1an(t)ψn(x))ψi (x)dx for i = 1, ...,N
ai (0) =

∫
D v0(x)ψi (x)dx for i = 1, ...,N
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Computation of the KL basis: Direct method

In this method, the displacements of a dynamical system are
measured or calculated at N locations and labeled
u1(t,x1),u2(t,x2), . . . ,uN(t,xN). Sampling these displacements M
times, we can form the following M×N ensemble matrix:

U=
[

u1 u2 . . . uN

]
=

 u1(t1,x1) u2(t1,x2) . . . un(t1,xN)
...

...
. . .

...
u1(tM ,x1) u2(tM ,x2) . . . un(tM ,xN)

 .

Thus, the spatial correlation matrix of dimension N×N is formed
as

Ru =
1

M
UTU.

The PO modes are then given by the eigenvectors of R,
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Direct method
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Algoritmo de implementação do método direto.
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Snapshot method
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Different guises of KL; basic ingredients

Sets:

D ⊂ Rl

Ω space of events

Rn codomain of functions

L2(D ,Rn) is a Hilbert space of functions with inner product <,>D

and associated norm ‖.‖D . The elements of this space are
deterministic functions.
(Ω,F ,P) is a probability space, F is a sigma-algebra and P a
probability measure. ω ∈ Ω is an event, that is a realization of a
random function.
The mean value of a random variable X is E (|X |) =

∫
Ω

X (z)dP(z)
with

X : Ω → Rn

z 7→ X (z)

Ω also has a Hilbert space structure, noted L2(Ω,Rn), if we put the
inner product <,>Ω= E (|XY |) and the associated norm is ‖.‖Ω
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Basic ingredients of KL

In order to compute KL basis one needs two basic ingredients:

a L2 space of functions
an averaging operator

In the literature we find mainly three main forms of KL
decompositions. To understand their similarities and differences it
is worth to think of the fields as defined in a cartesian product of
two sets, that will provide the main ingredients we just mentioned

X : D×Ω → Rn

(z ,ω) 7→ X (z ,ω)
We have the following interpretation:

X (z , .) is a random variable, that is, all possible realizations
of a field for fixed z ∈D . We need the averaging
operator to do statistics with this random variables,
one for each z ∈D .

X (.,ω) this is a realization of a field, hence a function of
L2(D ,Rn). Physical quantities are defined in terms of
this field so we need the first structure.

X (z ,ω) this is just an element of Rn.
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Karhunen-Loève expansion: main hypothesis

Let us consider a random field {X (z)}z∈D defined on a probability
space (Ω,F ,P)

X : D(⊂ Rl)×Ω → Rn

(z ;ω) 7→ X (z ;ω)

Assumption I: {X (z)}z∈D is a second-order random field i.e.

E (‖X (z)‖2) = E (< X (z),X (z) >) < ∞,∀z ∈D

E (.) denotes the ensemble average and ¡ , ¿ is the inner product in
Rn.
Assumption II: {X (z)}z∈D is continuous in quadratic mean i.e.

‖X (z +h)−X (z)‖2
L2(Ω,Rn) → 0 as h → 0.
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Under Assumption I and II

∀z ∈D , X (z) ∈ L2(Ω,Rn) (with
< Y1,Y2 >Ω= E (< Y1,Y2 >)).
Second order moment characteristics:
mX (z) = E (X (z))
RX (z1,z2) = E (X (z1)⊗X (z2))
CX (z1,z2) = E ((X (z1)−E (X (1)))⊗ (X (z2)−E (X (z2))))
When the random field is mean zero valued, then CX = RX .
We will assume in the sequel that {X (z)}z∈D is a mean zero
valued field.

The correlation function CX is continuous on D×D .
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The self-adjoint operator

According to our assumptions, the integral operator,

Q : L2(D ,Rn) → L2(D ,Rn)

ψ 7→ (Qψ)(z) =
∫

D
CX (z ,z ′)ψ(z ′)dz ′,

with kernel CX (z ,z ′), defines a continuous self-adjoint
Hilbert-Schmidt operator on the Hilbert space L2(D ,Rn).
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Eigenvalues property:

The operator Q has a countable number of eigenvalues
λ1 ≥ ·· · ≥ λn ≥ ·· · ,
i.e.

(Qψn)(z) = λnψn(z)

where
ψ1, · · · ,ψn, · · · ,

denote the associated eigenfunctions.
The set of eigenfunctions constitutes a orthonormal basis of
L2(D ,Rn)

< ψn,ψm >D=
∫

D
< ψn(z),ψm(z) > dz = δnm

where <,>D denotes the inner product in L2(D ,Rn) with the
associated norm ‖.‖D .
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Karhunen-Loève Theorem

The Karhunen-Loève theorem states that a continuous
second-order random field can be expanded in a series of the
eigenfunctions, ψn, as

X (z) =
∞

∑
n=1

ξnψn(z) (in L2(Ω,Rn))

where ξ1,ξ2, · · · ,ξn, · · · are scalar uncorrelated random variables
defined by

ξn =
∫

D
< X (z),ψm(z) > dz

with

E (ξnξm) = λnδnm =
{

λn if n = m
0 if n 6= m

The {ψk} are named the KL modes ( also, Principal Orthogonal
modes, POM).
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Energy property

The eigenvalues, λn, of Q are related to the mean “energy” of the
random field according to the following relation

E (‖X‖2
<,>D

) =
∞

∑
n=1

λn.
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Optimality property

The Karhunen-Loève expansion satisfies the following optimality
property:

E (‖X −
q

∑
k=1

ξkψk(z)‖2
D)≤ E (‖X −

q

∑
k=1

ξ̃k ψ̃k(z)‖2
D)

for any integer q and any arbitrary orthogonal basis (ψ̃k)k≥1 of
L2(D ,Rn) where ξ̃1, ξ̃2, · · · , ξ̃k , · · · are scalar random variables
given by

ξ̃k =
∫

D
< X (z),ψk(z) > dz

It is optimal in the sense that given a fixed number q of modes, no
other linear decomposition can contain as much energy as the KL
expansion.
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Summary: Karhunen-Loève Theorem

{X (z)}z∈D defined on a probability space (Ω,F ,P)
Covariance matrix function CX (z1,z2)

X (z ;ω) =
∞

∑
n=1

ξn(ω)ψn(z) in L2(Ω,Rn)

with

ψn : eigenfunctions (Qψ)(z) =
∫

D
CX (z ,z ′)ψ(z ′)dz ′∫

D
< ψn(z)ψm(z) > dz =

{
1 if n = m
0 if n 6= m

in L2(D ,Rn)

ξn : scalar random variables ξn(ω) =
∫

D
< X (z ,ω),ψm(z) > dz

E (ξnξm) =
{

λn if n = m
0 if n 6= m
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Applications to Random Mechanics

In random mechanics, the random characteristics have often
modeled using random fields {u(z)}z∈D where the domain D is

either D = Dx ⊂ Rp(with p = 1,2, or 3) static problems
or D = Dt ×Dx ⊂ R×Rp dynamics problems

Without loss of generality, we assume Dt = [0,T ] where T ∈ R+.
In order to find a flow model that still reveals the main features
contained in the dynamics, one often searches for an expansion in
the variables separated form

u(t,x) =
∞

∑
k=1

ak(t)φk(x)

where φk are deterministic Rn-valued functions, and {ak(t)}t∈Dt

are scalar time random processes.
Let us see how to adapt the KL theory to these cases.
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Approach 1

Apply the KL theorem to random field {u(t,x)}(t,x)∈D

with covariance matrix function Cu(t1,x1, t2,x2)

u(t,x ;ω) =
∞

∑
n=1

ξn(ω)ψn(t,x) in L2(Ω,Rn)

with

ψn : eigenfunctions (Qψ)(t,x) =
∫

D
CX (t,x , t ′,x ′)ψ(t ′,x ′)dt ′dx ′∫

D
< ψn(t,x)ψm(t,x) > dtdx =

{
1 if n = m
0 if n 6= m

in L2(D ,Rn)

ξn : scalar random variables ξn(ω) =
∫

D
< X (t,x ,ω),ψm(t,x) > dtdx

E (ξnξm) =
{

λn if n = m
0 if n 6= m
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Approach 2

For fixed t ∈Dt ,
Apply the KL theorem to random field {u(t,x)}x∈Dx

with the covariance matrix function Cu(t,x1, t,x2)

u(t,x ;ω) =
∞

∑
n=1

ξn(t,ω)ψn(t,x) in L2(Ω,Rn)

with

ψn(t, .) : eigenfunctions (Qψ)(x) =
∫

Dx

CX (t,x , t,x ′)ψ(x ′)dx ′∫
Dx

< ψn(t,x)ψm(t,x) > dtdx =
{

1 if n = m
0 if n 6= m

in L2(D ,Rn)

ξn(t, .) : scalar random variables ξn(t,ω) =
∫

Dx

< X (t,x ,ω),ψm(t,x) > dx

E (ξn(t, .)ξm(t, .)) =
{

λn if n = m
0 if n 6= m
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Approach 3

L2([0,T ]×Ω,Rn) with

< Y ,Z >[0,T ]×Ω= E (< Y ,Z >) with E (.) = 1
T

∫ T

0
E (.)dt.

Apply KL theorem the random field {u(.,x)}x∈Dx

with the covariance matrix function Cu(x,x′) = E (u(.,x)⊗u(.,x ′))

u(x ; t,ω) =
∞

∑
n=1

ξn(t,ω)ψn(x)

with

ψn(.) : eigenfunctions (Qψ)(x) =
∫

Dx

Cu(x ,x ′)ψ(x ′)dx ′∫
Dx

< ψn(x)ψm(x) > dx =
{

1 if n = m
0 if n 6= m

in L2(Dx ,Rn)

ξn : scalar random processes ξn(t,ω) =
∫

Dx

< u(t,x ,ω)ψm(x) > dx

E (ξnξm) =
{

λn if n = m
0 if n 6= m

in L2([0,T ]×Ω,R)
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Approach 3: discrete case, random process: {u(t)}[0,T ]

u : [0,T ]×Ω → Rn

(t,ω) 7→ u(t;ω)

L2([0,T ]×Ω,Rn) with

< Y ,Z >[ 0,T ]×Ω = E (< Y ,Z >) with E (.) = 1
T

∫ T

0
E (.)dt.

Covariance matrix Cu = E (u(.)u(.)T )

u(t,ω) =
∞

∑
n=1

ξn(t,ω)ψn

ψn : eigenvectors Cuψn = λψn

ψnψT
m =

{
1 if n = m
0 if n 6= m

in Rn

ξn : scalar random processes ξn(t,ω) =< u(t,ω)ψm >

E (ξnξm) =
{

λn if n = m
0 if n 6= m

in L2([0,T ]×Ω,R)
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Some remarks

1 The existence of the Karhunen-Loève expansion as described
in approach 3 does not require any assumption on stationarity
and ergodicity properties.

2 The Karhunen-Loève expansion as described in approach 3
usually depends on the time parameter T .

3 If the random field {u(t,x)}(t,x)∈Dt×Dx
is weakly stationary

with respect to the time variable,
(Cu(t,x , t ′,x ′) = Cu(t− t ′,x ,x ′)) then approach 2 and
approach 3 give the same results. Moreover, the KL expansion
does not depends on the time parameter T .

Rubens Sampaio On the Karhunen-Loève basis
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KL modes and Equivalent linear system

Let us consider the discrete nonlinear case: U(t) ∈ Rn

MÜ(t)+CU̇(t)+F (U(t)) = Bw(t)

where {w(t)}t is a Gaussian white noise process
{U(t)}: stationary process

Then, the KL modes of the stationary nonlinear response coincide
with the KL modes of the stationary response of the associated
equivalent linear system given by the true stochastic linearization
method:

MÜ(t)+CU̇(t)+KeqU(t) = Bw(t)

where Keq minimizes E ((F (U)−KU)T (F (U)−KU))
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How to compute the PO modes?

The techniques to estimate the covariance function of a random
field depends on its properties. If the random field is
non-stationary, there is a general method for estimating its
second-moment characteristics that assumes several realizations of
the random field are available.
If the random field is weakly stationary with respect to the time
variable, there is a method for estimating Cu(x1,x2) based on a
single realization of the random field.
Two methods can be used to compute de PO modes:
- Direct method
- Snapshot method

Rubens Sampaio On the Karhunen-Loève basis
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Example ������L
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Figure: Vibro-impact beam

Some results are presented here obtained from simulated data
generated from a mathematical model of a linear clamped beam
impacting a flexible barrier.
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Simulation of the experiment

EI
∂ 4w(x , t)

∂x4
+ρA

∂ 2w(x , t)
∂ t2

=Ff (t)δ (x−xf )+
N

∑
i=1

Fb(w(xci , t))δ (x−xci )

- Ten mode shapes of the associated linear system

ŵ(x , t) =
10

∑
i=1

qi (t)φi (x)

- Galerkin method (10 DOF)

Q̈ +[2ωiτi ]Q̇ +[ω2
i ]Q +Fci (Q) = BFf (t)

where modal damping were added to the discretized model.
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Comparison between PO modes ψi and linear modes φi

The first two KLs significantly differs from the first two mode
shapes reflecting the influence of the barrier upon the system.
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Reduced-order model formulation:

From the PO modes ψi , we have construct a reduced model.

EI
∂ 4w(x , t)

∂x4
+ρA

∂ 2w(x , t)
∂ t2

=Ff (t)δ (x−xf )+
N

∑
i=1

Fb(w(xci , t))δ (x−xci ) ,

- n KL modes with (1≤ n ≤ 10)

ŵ(x , t) =
n

∑
i=1

ai (t)ψi (x)

- Galerkin method (n DOF)

Ä+[2ωiτi ]Ȧ+FKL(A) = BKLFf (t)

where same modal damping were added to the discretized model.
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This figure presents a comparison between the original and the
reduced-order models constructed with 5 and 10 PO modes.
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Figure: Dynamic with reduced order modes with 5 and 10 PO modes

The result is clearly not as good as expected and the full
reduced-order model is not yet capable of reproducing the original
response.
A probable explanation for this result is that the use of the modal
damping ratios for the first and second KLMs is inappropriate as
they are physically different.
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Concluding remarks

In order to use the KL theory to expand a random field in the
variables separated (time-random variables and spatial
variable), it is necessary to use the adequate spatial
covariance function.

The use of the PO modes to develop the reduced-order model
in the presence of damping may not be robust.
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