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Electronic Structure (often called Quantum Chemistry) 
calculations use quantum mechanics to determine the 
wavefunctions of the electrons in molecules.  

With this infomration, one can determine:

1. Structure of the molecule (bond lengths, angles)
2. Electronic energy (bond energies, enthalpies of formation, etc)
3. Spectra (electronic, vibrational, rotational, etc)
4. Electrical properties (dipole moment, polarizability)
5. Molecular orbitals and derived properties such as effective 

charges, bond orders.
6. Barriers to reaction and other rate properties.
7. Mechanical and transport properties of materials
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Quick Primer on Quantum Mechanics
as applied to electrons in atoms and molecules

In quantum mechanics, the primary goal is to determine the wave 
function Ψ(x,y,z).  This depends on electron coordinates x,y,z (say for 
one electron) and it determines the probability density for finding the 
electron at any position via:

|ψ(x,y,z)|2 = probability density for finding electron at x,y,z

The wavefunction is obtained by solving the Schrödinger equation 
(1926):

HΨ = EΨ

where H = Hamiltonian operator (described on next slide) and E is the 
energy.



Hydrogen Atom

Let’s consider an electron of mass m and charge -e bound to a proton 
(which we take to have infinite mass).  The Hamiltonian of the electron 
describes two effects: the kinetic energy of the electron, and the 
Coulomb attraction between the electron and the nucleus.  This is 
given by:
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Here R is the radial function (tells you about the probability of finding 
the electron as a function of the distance from the nucleus)  Yℓm is 
called a spherical harmonic, and it tells you about the angular 
dependence of the wavefunction.

Given this Hamiltonian, it is possible to solve the Schrödinger equation 
exact by assuming that the wavefunction has the form:

2 2 2
2

2 2 2x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂



This leads to the familiar 
s, p, d, etc orbitals of the 
hydrogen atom 



The Schrödinger equation also tells us the energy levels 
of hydrogen atom:

n = 1,2,...,4 is called the “principle” quantum number

hR = 1313 kJ/mol = 13.6 eV.

E hR
nn = − 2

n=1, E = -1313kJ/mol

n=2, E = -1/4(1313) kJ/mol
n=3
n=4
n= , E = 0

∆E = ¾ (1313) = 985 kJ/mol
= hc/λ with λ=121.6 nm
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Once we have the energy levels, we can describe the 
electronic spectrum of the hydrogen atom

n’=2,3,… → n”=1n’=3,4,… → n”=2n’=4,5,… → n”=3
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Pauli Principle: for electrons, the wavefunction, 
including spin, must be antisymmetric with 
respect to interchange of any two electrons.

He atom: Can one write a wavefunction as a 
product of two orbitals:

He 1s 1s(1) (2)ψ = φ φ

Electron Spin States:
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Including for spin, the 1s2 state of He is:
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Slater determinant form of wavefunction:
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Slater determinants give us a general prescription 
for writing the wavefunction of any atom or 
molecule.  Thus the wavefunction of the Be atom 
is:



Electronic structure of molecules

The simplest molecule is H2
+:

(r, R) (r; R) (R)  = ψ χΨ

n e en nnH T T V V= + + +

electronic nuclear

In this case, the complete Hamiltonian including both nuclei and electrons 
has the form:

Solving the Schrödinger equation with this Hamiltonian is really hard, 
however since the electrons are so much lighter than the nuclei, it is 
possible to invoke what is called the Born-Oppenheimer approximation, 
wherein the wavefunction is written as a product:



e en e(T V ) E+ ψ = ψA

n nn e(T V E ) E+ + χ = χA

Electronic Schrödinger equation:

Nuclear Schrödinger equation:

This leads to two Schrödinger equations to solve, one for 
the electrons (with the nuclei fixed) and one for the nuclei.

In what follows, we’ll mostly worry about the electronic Schrödinger 
equation, but occasionally we will examine the potential energy 
surface V=Vnn+Eel as this tells us how the nuclei move.
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Solving electronic Schrödinger equation:  We assume that the molecular 
orbitals (wavefunctions) are obtained from a linear combination of 
atomic orbitals (LCAO)
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If this solution is substituted into the Schrödinger equation, and 
the coefficients Ca and Cb are optimized, we obtain the following 
secular equation to determine the energy.

Hamiltonian matrix

Overlap matrix
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If this equation is now solved, we obtain the following expression for the 
ground state H2

+ energy function:



The molecular orbital wavefunctions have the following form:

g A B

u A B

1s N (1s 1s )
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ψ = σ = +

ψ = σ = −



Molecular Electronic Structure Calculations

With this introduction, we are now ready to describe electronic structure 
calculations in a general sense.

Our goal is to solve the Schrödinger equation for the energy of the electrons 
and the wavefunction, for fixed locations of the nuclei (Born Oppenheimer 
Approximation).  The general form of this equation is:

HelΨ = EelΨ

where Hel is known as the Hamiltonian operator (the energy operator for the 
electrons), Eel is the electronic energy, and Ψ is the wavefunction (which 
depends on the coordinates of the electrons).  The Hamiltonian operator for a 
molecule can be written as:

where the first term describes the electronic kinetic energy, the second the 
attraction of the electrons to the nuclei and the third the electron-electron 
repulsion.  

e e en eeĤ T V V= + +A



The kinetic energy operator has the form
for each electron, just as in the hydrogen atom.  

The attractive and repulsive potentials are determined by the Coulomb 
interactions between the relevant particles.  The general form of the 
Coulomb interaction is VCoulomb=q1q2/r12, where q1 and q2 are the charges of 
the two interacting particles and r12 is the distance between the particles.  
Electrons have a charge –e, while nuclei are +Ze, where e=1.6x10-19C, so 
we have:

Often we will use units for which =m=e=1. These are known as atomic 
units.  In this system of units, we have:
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We will learn about three kinds of calculations that “solve” the electronic 
Schrödinger equation in some sense: ab initio, semiempirical and density 
functional theory.  

1) In an ab initio calculation, the Schrödinger equation is solved using the 
Hamiltonian given previously, by using basis functions to represent the 
wavefunction. All terms in the energy expression are calculated 
rigorously.

2) In a semiempirical calculation, the procedure is the same, but the energy 
expression is greatly simplified by letting some terms be expressed in 
terms of empirical expressions rather than calculated.

3) In a density functional theory calculation, the energy of the electrons is 
reexpessed in terms of the electron density rather than the wavefunction, 
and the density is obtained by solving a Schrodinger-like equation for 
each electron that includes for interactions with the other electrons.



Ab initio calculations

To solve the Schrödinger equation, we write the many-electron wavefunction in 
an approximate way, as a product of wavefunctions for each electron.  The 
wavefunctions for the individual electrons are called molecular orbitals, so if we 
write the total wavefunction as a product of orbitals, this means that each 
electron “does its own thing”, seeing only the average repulsion due to the other 
electrons.  This theory is called Hartree-Fock theory.

We have to obey the Pauli principle, so the product of orbitals needs to be made 
antisymmetric with respect to interchange of electrons.  To achieve this, we use 
a Slater determinant (see below), as this is a mathematical device that permutes 
the electrons among the orbitals with appropriate signs so that the wavefunction
is antisymmetric with respect to exchange of any two electrons.  The resulting 
theory can be developed with the restriction than the up and down-spin orbitals
be the same (restricted Hartree-Fock) or without this restriction (unrestricted
HF).
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If we assume that the wavefunction Ψ is a Slater determinant, then the best 
possible orbitals in that determinant are obtained by solving the Hartree-
Fock equations:

where f is called the Fock operator, Φ is the orbital and ε is the orbital 
energy.  These equations are a lot like Schrödinger equations for each 
electron, and the “Hamiltonian” is sort of like a Hamiltonian for each 
electron.  Thus we have:

where the first term describes kinetic energy, the second the attraction to 
the nuclear, and the remaining two describe Coulomb and Exchange
interactions.
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Determining the orbitals
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LCAO-MO method
To solve the HF equations, we expand each molecular orbital in 

terms of a linear combination of atomic orbitals.  For example, for the 
H2

+ molecule, the ground state orbital is expressed as a sum of 1s 
orbitals on each atom, i.e., φ=ca1sa+cb1sb, where the “a” and “b” labels 
refer to the two nuclei, and ca and cb are coefficients for each orbital that 
we would optimize to give the best possible energy.  More generally, we 
would write:

where “bν” stands for the vth atomic orbital basis function and ckv are 
coefficients that determine the contribution of the vth basis function to 
the kth molecular orbital.  We will talk about basis functions later, but for 
now we note that these would be 1s, 2p, 3d and other orbitals that are 
centered on the atoms.  

The coefficients ckν are optimized to give the best possible 
solution.  Using variational theory, one can show that this optimization 
process is the one that gives the lowest molecular orbital energies εk.



Secular equation
We won’t go through the details, but variational theory leads 

to the following equation (known as the secular equation) to determine 
the molecular orbital energies ε:

This equation is called the secular equation, and it says that the 
determinant of the difference between two matrices f and εs must 
equal zero.  The f matrix is obtained from the Fock operator:

while the s matrix involves the overlaps of the atomic orbital basis 
functions:
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Solving the Hartree-Fock equations and obtaining 
molecular properties

The secular equation is used to determine 
the orbital coefficients ckv, and therefore the molecular 
orbitals.  In Hartree-Fock theory, this is only the first 
step of an iteration procedure, as the Coulomb and 
Exchange terms in the Fock operator depend on the 
orbitals.  To continue, one uses the newly obtained 
orbitals to construct a new Fock operator, then solves 
the HF equations to generate energies ε and 
additional estimates of the orbitals.  After iterating this 
process, one eventually obtains orbitals that are 
invariant to further iteration.  Once this is done, the 
total energy Eel is calculated.  

Much of the technology for HF calculations 
(and much more) was developed by John Pople, who 
used to be a professor at Northwestern.  Pople
received the Nobel Prize for this work in 1998.



Molecular Orbitals and Hartree-Fock Energies

As an example of the application of HF theory, the next two slides 
show the molecular orbitals of the water molecule.  This molecule has 10 
electrons, so there are 5 occupied molecular orbitals in the ground state.  
The first slide (Table 1) shows that these five orbitals have energies that 
vary from -20.541 to -0.50066 hartrees (1 hartree = 27.211 eV = 627.51 
kcal/mol).  The matrix in this slide gives the orbital coefficients ckv, showing 
how each orbital is decomposed into atomic orbitals on each atom.

The second slide (Figure 1) shows pictures of the orbitals.  This 
indicates that the orbital with energy -20.541 (labeled “1”) is primarily 
localized on the oxygen atom, and it has no nodal surfaces (surfaces where 
the wavefunction goes to zero).  We can consider that this orbital is a 1s 
function associated with the oxygen atom.  Orbital “2” is mostly oxygen 2s, 
while orbitals 3 and 4 describe bonding between the O and H’s.  Orbital 5, 
the highest occupied molecular orbital (HOMO) is mostly a lone pair 
associated with an oxygen 2p that is perpendicular to the plane of the 
molecule.



Table 1



Figure 1: Molecular orbitals for H2O



Atomic Orbital Basis Functions

To solve the Hartree-Fock equations, the orbitals Φ are expanded in a 
basis set of atomic basis functions.  Instead of using hydrogen atom functions for 
this expansion, the codes commonly use simpler functions.  Long ago, Slater 
developed orbitals (known as STO’s, or Slater type orbitals) that have the form:

These are like hydrogen atom functions, but with a simplified dependence on the 
radial coordinate r that consists of an exponential times  a power in r.  Although the 
Slater orbitals are quite effective, integrals involving the Fock operator are difficult.  
An alternative that circumvents this are Gaussian functions of the radial coordinate 
multiplied by spherical harmonics for the angles around each atom: 

Individual gaussians don’t look like hydrogen atom orbitals, but this can be fixed by 
summing many gaussians:  

This gives us basis functions like STO-3G in which three gaussians are summed to 
give functions that look a lot like the hydrogen atom orbitals.  The more gaussians
the better, so STO-6G (i.e., adding 6 gaussian functions) is an improvement over 
STO-3G.  
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Additional types of Gaussian-orbital basis functions

Split Valence Basis

To improve accuracy, it is helpful to use multiple atomic basis functions for 
each electron shell.  Thus 6-31G is a split-valence basis in which there are 
two independent basis functions for each valence electron.  

Polarization Functions

Additional can be achieved with the use of polarization functions, which are 
functions with one unit of angular momentum higher than would normally be 
found for the valence electrons.  These functions allow the orbitals to distort 
as a result of bond formation.  A common basis function that includes 
polarization functions is called 6-31G**.

Diffuse Functions
For some problems it is important to include Gaussians with small 
exponents to describe the “tail” of the wavefunction.  An example of a 
commonly used basis function in this category is 6-31+G.



Beyond Hartree-Fock:

The Hartree-Fock equations are Schrödinger-like equations but they apply to 
one electron that interacts with the average potential due to all the other 
electrons.  The Fock operator contains the kinetic energy of this electron, the 
attractive Coulomb interaction with the nuclei, the average repulsion with the 
other electrons and an attractive interaction with the other electrons that 
arises from the Pauli principle (the exchange interaction).  

What is left out in HF theory is correlation between the electrons.  There are 
many approaches for adding this back in, of which the most commonly used 
is called MP2 (second order Moller-Plesset) theory.  Even better theories are 
coupled cluster theory and multireference self consistent field theory.  By 
systematically increasing the sophistication of these methods, it is possible to 
approach the exact solution to the Schrödinger equation.  This is a key 
advantage of ab initio methods that is not available with other theories.  
However ab initio methods beyond MP2 are generally not feasible, so other 
methods, such as density functional theory, are more popular.



Semiempirical Molecular Orbital Theory

In semiempirical methods (mostly invented by John Pople), one uses a 
Slater determinant of orbitals as before, and this generates a secular 
equation containing overlap and Fock matrices, however the elements 
in these matrices are approximated in semiempirical methods ,often 
replacing hard integrals with empirical functions.  

There are many kinds of semiempirical methods:

(a) Huckel theory: appropriate to the π electrons in an aromatic 
hydrocarbon.

(b) Extended Huckel theory: Similar to Huckel, but all electrons are 
described.

(c) NDO Methods: CNDO and INDO: These methods attempt to mimic 
Hartree-Fock calculations, but integrals involving Coulomb and 
Exchange are mostly approximated.

(d) AM1, PM3 are similar to INDO, but integrals are parametrized to match 
experiment.



Huckel Theory

In Huckel theory, we assume that the σ bonding framework is frozen, and only 
π bonding is of interest.  The wavefunction is expanded in terms of a linear 
combination of p-π orbitals on all the C, N, O atoms:

The secular equation (say for a basis set of two orbitals) has the form.
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where αn and βnm are parameters of the model.

In Huckel-Theory we assume that the overlaps Snm are zero unless n=m, in 
which case S is unity. 



Example of application of Huckel: ethylene H2C=CH2
Since there are two p-π electrons. the secular equation becomes:

E
0

E
α − β
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β α −

E
α − β⎧

= ⎨α + β⎩

The energy levels are:

Applying the aufbau principle, we would put the two p-pi electrons in 
the lowest energy level, so that the total energy is:

Total energy = 2α+2β

and the lowest excitation energy is +2|β|.  Comparison with experiment 
can be done by assigning values to α and β.  



Extended Huckel

In this approach, one uses all the valence orbitals on the 
atoms, and then replaces integrals by:

where Snm are the calculated overlap integrals between orbitals n 
and m and K is a parameter.

Semiempirical methods avoid the calculation of expensive 
integrals, and as a result the computational effort is much less
than either HF or DFT.  However accuracy is less too.  
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NDO Methods: A more advanced set of semiempirical theories are 
called NDO methods, where NDO stands for neglect of differential 
overlap. 

Pople’s most commonly used NDO methods are called CNDO and 
INDO:

a. CNDO (complete neglect of differential overlap):  This is a similar 
method to extended Huckel, but with two electron integrals negected
when µ≠ν and σ≠λ. The nonzero integrals were chosen to reproduce 
the results of accurate HF calculations.

b. INDO (intermediate neglect of differential overlap):  Here we include 
exchange between electrons on the same atom.

In the 1960’s and thereafter, Michael Dewar converted INDO into AM1 
and PM3, wherein the parameters were redefined to match 
experimental data.
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Density functional theory

Density functional theory (DFT) is another way to do electronic 
structure calculations that looks and acts a lot like HF theory, but in the end 
produces higher quality results with the same or less effort.  The equations 
being solved (the Kohn-Sham equations) have the same form as the HF 
equations but the Fock operator is different, with effects due to electron 
correlation directly included. 

The starting part of this theory is the Hohenberg-Kohn theorem, 
which states that the electronic energy E of any molecule can always be 
expressed as a functional of the electron density ρ (i.e., not requiring the 
wavefunction Ψ).  This energy has the form:

where here we have generalized our earlier Hartree-Fock expression to 
include for the exchange and correlation energy Exc.
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To show how this works, here are expressions for the electron-nuclear 
attraction and the electron-electron repulsion in terms of the density ρ

The electron density can be expressed in terms of the occupied 
molecular orbitals using

However in H-K theory, one doesn’t need to have wavefunctions, as 
only the density is needed.
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Although it was easy to express the Coulomb attractive and repulsive 
terms as functionals of the density, however the kinetic energy is a 
challenge.  The exact expression is:

The exact expression for T in terms of ρ is not known, however a rough 
approximation is given by the local density approximation (LDA):

Better expressions are known, but the LDA is good enough to get 
started.  

The last part of the energy expression is the exchange-
correlation energy.  Again there is no known exact expression, but a 
local density approximation is:

where α is 1 (rigorously) but is usually allowed to vary to improve the
quality of the results.
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Kohn-Sham Theory

The theory to this point only requires the density matrix.  However the 
absence of an exact expression for the kinetic energy is a serious problem.  
To circumvent this, we go back to a wave-function based theory for the 
kinetic energy but stay with density functional expressions for everything 
else.  This leads to a Hartree-Fock-like equation for the orbitals as follows:

where the Kohn-Sham operator is:



Gradient Corrected DFT:

The theory defined to this point is called LDA, local density functional 
approximation.  This theory is not adequate for most applications, but it is 
possible to improve it by adding terms to the exchange-correlation 
functional that depend on gradients of the electron density. 

The most commonly used expression is called B3LYP, developed in 
1993.  This acronym stands for the names of the people who contributed 
important parts to the energy expression, namely Becke, who developed 
an expression for the exchange energy, and Lee-Yang-Parr, who 
developed an expression for the correlation energy.  In B3LYP, terms in 
the exchange and correlation energy expressions were combined using 
three adjustable parameters (hence the “3") that were optimized so as to 
give accurate heats of formation for a large number of molecules.  Thus 
B3LYP has empirical components to it (unlike HF), and in many respects 
it is no accident that it is more accurate.



Summary of Electronic Structure Methods:
Hartree-Fock Theory: ROHF, UHF

Beyond HF  (there is no “beyond” for DFT):
•MP2, MP4 – 2nd and 4th order perturbation theory (starting with HF)
•CCSD – Coupled Cluster singles and doubles (starting with HF)
•MCSCF, CASSCF – Multireference SCF, Complete Active Space SCF

Semiempirical Theory
•Huckel
•Extended Huckel
•CNDO, INDO
•PM1, AM1

Density Functional Theory
•LDA
•B3LYP



Properties that can be obtained from Electronic Structure Calculations

So far we have emphasized the calculation of the electronic energy and 
molecular orbitals.  However there are many other properties that can be 
determined once we have the wavefunction in hand.  Here is a brief 
summary.

1. Potential energy surface (Vn=Eel+Vnn):
Dissoc Energy = 
Note: Need to add in vibrational zero point energy to determine ∆E(T=0), and need to 

calculate partition functions to get ∆E(T).  Additional work provides other 
thermodynamics functions.

2. Wavefunction and orbitals: used to determine electron density
Φk(qe; Qn) Ψ =  | Φ1 Φ2 Φ3 ...|

3. Electrostatic Moments (dipole moment, etc) and electrostatic potential
Q = charge
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4. Gradients, Hessians of the potential energy surface
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5. Polarizabilities

Hyperpolarizabilities
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6. Magnetic moments, chemical shifts, hyperfine couplings



Effective Charges
There are no unique charges that can be attached to each atom.  

However there are several definitions that yield useful results in some cases.

1.Atomic charges, bond orders

2.AIM (Bader) charges: partition the molecule in atoms using the topology of 
the electron density

3.RESP (restrained electrostatic potential) charges
a.  atom centered
b.  bond midpoints
c.   lone pairs

Calculate Eel at several qN and minimize.
Constraint:
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Results from electronic structure calculations: potential energy
curves, equilibrium geometries, dissociation energies of H2

H2 potential curve







H + H2 → H-H-H → H2 + H 









Solvation effects

Often one wants to learn about the properties of two interacting
molecules, or a molecule plus a solvent. Including the other 
molecule or the solvent explicitly can be very time consuming, so 
an alternative is to do quantum mechanics on just the molecule, 
and then use classical electrostatics to describe the interaction 
with another molecule or with a solvent.  

To do this it is convenient to describe the molecule in terms of
effective charges on each atom, so that an electrostatic potential 
can be generated. Once the charges are known, the interaction 
with solvent can be described by solving the Poisson-Boltzmann
equation (basic equation of electrostatics) to determine the 
electrostatic potential and from this the solvation energy.



Materials Fracture and Adhesion

Steven Mielke, Diego Troya, LiPeng Sun, Jeff Paci, Ted 
Belytschko, Sulin Zhang and George C. Schatz

Northwestern University

Also thanks to:
Rod Ruoff, Horacio Espinosa, Phil Messersmith – Northwestern

Peter Zapol, Orlando Auciello-ANL
Roberto Car - Princeton



Using Electronic Structure Theory to Model 
Mechanical Properties of Nanomaterials

•Nanotubes, rods and other nanomaterials provide the 
simplest systems for which mechanical properties 
(stress/strain behavior) can be measured.

•These materials provide an excellent opportunity to learn 
about the influence of defects and chemical 
functionalization.

•They are sometimes amenable to study using electronic 
structure theory methods, thus providing a platform for 
connecting fundamental theory with experiment.



Electronic Structure Theory will be used to:

•Establish shape of stress/strain curves, and their 
sensitivity to nanotube structure.

•Interpret experiments, establish theoretical limits. 

•Examine the role of defects and chemical functionalization
on fracture behavior.

•Integrate single nanotube results with bulk results.



Using electronic structure theory to describe 
fracture in nanosystems is a big challenge

•Minimum size systems to model structure typically 
contain >100 atoms, and real systems are usually much 
larger.

•The quality of theory needs to be carefully considered: 
bonds are being broken, open-shell effects can be 
important, both finite cluster and periodic boundary 
conditions need to be considered.

•Finite temperature effects might be important, but it is 
impossible to do useful MD calculations with most 
electronic structure models.  Multiple pathways to 
fracture are possible.



Carbon Nanotubes (defects, chemical functionalization)

Ultrananocrystalline Diamond Films (grain boundary 
fracture, doping effects)

Systems considered



Electronic structure methods

DFT (PBE): SIESTA (Spanish Initiative for Electronic 
Simulations with Thousands of Atoms):  a self-consistent 
DFT program. Highest accuracy of the methods we have 
studied, but computational effort is a serious problem.

PM3: Semiempirical method which is reasonably close to 
DFT for carbon-based nanostructures.  Largely restricted 
to finite cluster calculations.

MSINDO: Semiempirical method that can be used both 
for clusters and for periodic boundary conditions.  For 
carbon-based nanostructures it is less accurate than 
PM3.

SCC-DFTB (density functional-based tight-binding with 
self-consistent charges): an approximate DFT method.



Other methods

For systems with carbon and hydrogens, can use
Tersoff-Brenner (reactive bond-order) potential for 
MM calculations.

Mixed MM/CM studies (and ultimately QM/MM/CM) 
to extend from a few atoms to a continuum 
description.



Carbon nanotube fracture

Carbon nanotubes are likely the strongest known materials

Their superior mechanical properties (resisting more than 1 order of magnitude larger
tensile loads than reinforced steel) and their lightweight nature (six times less
than steel) make them perfect candidates for reinforcement materials in nanocomposites



Fracture of Carbon Nanotubes
MM calculations with empirical force fields

T. Belytschko, S. P. Xiao, G. C. Schatz and R. Ruoff, Phys. Rev. B 65, 235430/1-/8 (2002).

(Multiwall tubes)

(single wall tube results)



Carbon nanotube fracture

l0

∆l/2∆l/2

strain= ∆l/ l0

Determination of stress vs strain curve for [5,5] tube 
with Stone-Wales defect  (170 carbon atoms)



Strain = 0.255 (just before fracture)
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PM3 results:



Strain = 0.26 (just after fracture)
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[5,5] tube [10,0] tube

Stress-Strain Curves: undefected tubes



One and Two-Atom Vacancies



Fracture for one/two atom 
vacancies

Two-atom vacancy (sym) 
[5,5] tube

One-atom vacancy 
(asym), [10,0] tube



Fracture for Large Hole Defects
Hole Defect

Slit Defect

MM results



Ultrananocrystalline (UNCD) Diamond Films

D. M. Gruen et al, Appl. Phys. Lett. 64 (1994) 1502: J. Vac. Sci. 
Tech. A13 (1995) 1628.



Σ13 grain boundary structure
67.4o twist perpendicular to 100 plane
208 atoms

P. Zapol, M. Sternberg, L. A. Curtiss, T. 
Frauenheim, D. M. Gruen, Phys. Rev. B 65, 
045403 (2002)

DF-TB (tight binding) studies of diamond film 
growth, and of grain boundary structures.

UNCD Structural Modeling



UNCD grain boundaries

no GB

two GBs



UNCD fracture:  PBE

• Significant damage 
to both GB’s.

• Complete failure of 
the bottom GB.  



UNCD:  Results 

• Energy/stress versus strain 
curves.  

• Results produced using  
MSINDO (+),  SIESTA to 
calculate the energy of the 
MSINDO structures (*), and  
SIESTA using the PBE 
GGA functional (■).  

• PBE//MSINDO is much 
better than MSINDO at 
capturing mechanical 
properties but predicts a 
qualitatively different 
fracture mechanism.     

J. T. Paci et al., Chem. Phys. Lett. 414, 351 (2005).



Summary of mechanical properties 

E - the Young’s modulus (stiffness).
εf - failure strain.
σf - fracture stress.    

PBE results are probably the most accurate.



Theoretical versus practical 
strengths

• Our E values of 1.09 and 1.05 TPa for single-crystal and 
UNC diamond, respectively, agree well with the 
corresponding experimental values of 1.05 and 0.95 
TPa.  

• Experimentally measured fracture stress values for 
single-crystal diamond and UNCD are σf ~ 4 GPa and σf
~ 1-5 GPa, respectively.  We are way-off here.  What we 
have left out is the effect of large (~100 nm) cracks.  

• Cracks lead to regions of stress concentration which 
result in crack propagation and material failure.  

• The effect of defects on the fracture behavior of a brittle 
material like diamond can be described using Griffith 
theory.  



Griffith theory

• It can be shown that for a penny-shaped crack of 
radius c, the Griffith fracture stress is 

where γ is the fracture surface energy and ν is the 
Poisson ratio.  For UNCD, we calculated γ =2.6 J/m2.  
For example, this means that for a crack with radius, c
= 50 nm in a UNCD grain boundary, σf = 9.3 GPa.  

• Basic idea: when the strain energy released by fracture 
is larger than the energy required to create new surface 
(the surface energy), a crack will propagate.  



Practical strength of UNCD
• Typical experimentally 

observed defects have 
radii, c ~ 300 nm.     

• According to the Griffith 
equation, a crack with this 
radius will result in σf = 
3.8 GPa, a value within 
the σf ~ 1-5 GPa UNCD 
fracture stress range. H. D. Espinosa et al., J. Appl. Phys. 

94, 6076 (2003).  



Computational modeling of bioadhesion

Fred Arnold, Linlin Zhao, George C. Schatz 
in collaboration with Phil Messersmith

Mussel adhesive protein (MAP) 
contains an unusually high 
concentration of the DOPA 
amino acid residue. 

This is produced by hydroxylation of tyrosine (one of the standard 
amino acids).  

H2N CH C

CH2
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CH2

OH
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OH

OH

Tyr DOPA



Recently, Messersmith and coworkers have measured the 
force needed to pull-off a single DOPA-containing molecule 
from a TiO2 surface.  This corresponds to a 22 kcal/mol 
binding energy.

What is the mechanism of adhesion? Coordination 
complex, hydrogen bonds, pi-stack interaction, or a 
combination of these are all possible?

(Lee, Scherer, Messersmith, PNAS submitted)



Proposed mechanisms for DOPA binding to TiO2

Possible mechainsms of DOPA 
binding to TiO2 surfaces
Messersmith, P.B. et al, Langmuir, 21, 640, 
2005; Deming, T.J. Current Opinion in 
Chemical Biology, 3, 100, 1999

bidentate complex

bridged complex



S1(2) + catechol            C2(4), D1(2) + catechol           C7(8) + H2O 

Catechol-TiO2 complexes: C2, C4, C7, C8

Cluster Models used to model the TiO2 surface

Cluster models used for TiO2 absorption site : S1, S2, D1, D2



Binding energy (kcal/mol) of catechol at TiO2 absorption 
site and defect Ti=O2 double bond site, results obtained 
using GAMESS HF/6-31G*//B3LYP/6-31G*. 

Bidentate structure is favored over monodentate
structure, and binding energy is around 27 kcal/mol.



Further studies

• Calculate pull-off force to make 
comparisons with Messersmith
measurements

• Compare DOPA, tyrosine and other 
amino-acids

• Compare TiO2, SiO2, Au and other 
surfaces to determine relative role of 
different adhesion mechanisms


