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Electronic Structure (often called Quantum Chemistry)
calculations use quantum mechanics to determine the
wavefunctions of the electrons in molecules.

With this infomration, one can determine:

Structure of the molecule (bond lengths, angles)

Electronic energy (bond energies, enthalpies of formation, etc)
Spectra (electronic, vibrational, rotational, etc)

Electrical properties (dipole moment, polarizability)

Molecular orbitals and derived properties such as effective
charges, bond orders.

Barriers to reaction and other rate properties.

Mechanical and transport properties of materials
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Quick Primer on Quantum Mechanics
as applied to electrons in atoms and molecules

In quantum mechanics, the primary goal is to determine the wave
function W(x,y,z). This depends on electron coordinates x,y,z (say for
one electron) and it determines the probability density for finding the
electron at any position via:

lw(X,y,z)|? = probability density for finding electron at x,y,z

The wavefunction is obtained by solving the Schrodinger equation
(1926):

HY = EY

where H = Hamiltonian operator (described on next slide) and E is the
energy.



Hydrogen Atom

Let’s consider an electron of mass m and charge -e bound to a proton
(which we take to have infinite mass). The Hamiltonian of the electron
describes two effects: the kinetic energy of the electron, and the
Coulomb attraction between the electron and the nucleus. This is
given by:
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Given this Hamiltonian, it is possible to solve the Schrodinger equation
exact by assuming that the wavefunction has the form:

y(r,0,0) =R(r)Y,,(6,9)

Here R is the radial function (tells you about the probability of finding
the electron as a function of the distance from the nucleus) Y, is
called a spherical harmonic, and it tells you about the angular
dependence of the wavefunction.




This leads to the familiar
S, p, d, etc orbitals of the
hydrogen atom




The Schrddinger equation also tells us the energy levels
of hydrogen atom:
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n=1,2,...,4is called the “principle” quantum number

hR =1313 kd/mol = 13.6 eV.

n=g E =0
n=4

n=3

W n=2, E = -1/4(1313) kJ/mol

Encrgy

AE =%, (1313) = 985 kJ/mol
= hc/A with A=121.6 nm

n=1, E =-1313kJ/mol



Once we have the energy levels, we can describe the
electronic spectrum of the hydrogen atom
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Ry = 10973731 cm™ = 13.605698 ¢V is known as the Rydberg constant.
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He atom: Can one write a wavefunction as a
product of two orbitals:

Vi =0, (D (2)

Pauli Principle: for electrons, the wavefunction,
Including spin, must be antisymmetric with
respect to interchange of any two electrons.

Electron Spin States:
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Including for spin, the 1s? state of He is:

Vo =0, (Do (2) (alﬁi/_zﬁlaz)

Slater determinant form of wavefunction:
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Slater determinants give us a general prescription
for writing the wavefunction of any atom or

molecule. Thus the wavefunction of the Be atom
IS:

(I)ls (Do, (I)ls (DB, (|)2s (Do, (|)2s (DB,
1Y 0,2,  ¢,.(2)B,
Be)=| —
w(Eo (4!j P, .08, .
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Electronic structure of molecules

The simplest molecule is H,*:

d b Figure 10.1 Coordinate
R definitions for H," molecule.

In this case, the complete Hamiltonian including both nuclei and electrons
has the form:
H=T +1T, +V_+V_

Solving the Schrodinger equation with this Hamiltonian is really hard,
however since the electrons are so much lighter than the nuclei, it is
possible to invoke what is called the Born-Oppenheimer approximation,
wherein the wavefunction is written as a product:

Y(r, R)= \\|1(Yr; }R)\x(YR})

electronic nuclear




This leads to two Schrodinger equations to solve, one for
the electrons (with the nuclei fixed) and one for the nuclei.

Electronic Schrodinger equation:
(Te T Ven )\lj — Eef\ll

Nuclear Schrodinger equation:

(T +V_+E_)x=Ex

In what follows, we’ll mostly worry about the electronic Schrodinger
equation, but occasionally we will examine the potential energy
surface V=V, tE, as this tells us how the nuclei move.



Solving electronic Schrodinger equation: We assume that the molecular
orbitals (wavefunctions) are obtained from a linear combination of
atomic orbitals (LCAO)

yv=C_1ls, +C,ls,

If this solution is substituted into the Schrodinger equation, and
the coefficients C, and C, are optimized, we obtain the following
secular equation to determine the energy.

Hu-E  Hy-ESy|
Hba_ESoa be_E B

aa <lsa‘He€‘lsa> Hamiltonian matrix

H
Ha <130‘He€‘150>

S, = <lsa ‘lsb> Overlap matrix



If this equation is now solved, we obtain the following expression for the
ground state H,* energy function:

H,,+H,
1+S,,

E, =
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The molecular orbital wavefunctions have the following form:

v, =0,ls=N_ (Is, +1sy)

y_=o,ls=N_(s, —1sy)

Figure 10.4 Three-dimensional contour plots of i+, and #r_. [ These are ac-
tually the true o, Is and o, 15 orbitals of Hy .) The position of the nuclei is
indicated using two filled black circles connected by a black line.



Molecular Electronic Structure Calculations

With this introduction, we are now ready to describe electronic structure
calculations in a general sense.

Our goal is to solve the Schrodinger equation for the energy of the electrons
and the wavefunction, for fixed locations of the nuclei (Born Oppenheimer
Approximation). The general form of this equation is:

HeILIJ = EeILIJ

where H_ is known as the Hamiltonian operator (the energy operator for the
electrons), E, is the electronic energy, and W is the wavefunction (which
depends on the coordinates of the electrons). The Hamiltonian operator for a
molecule can be written as:

N

Hef = Te + Ven + Vee

where the first term describes the electronic kinetic energy, the second the
attraction of the electrons to the nuclei and the third the electron-electron
repulsion.



hZ
The kinetic energy operator has the form T= —ﬂvz
for each electron, just as in the hydrogen atom.

The attractive and repulsive potentials are determined by the Coulomb
interactions between the relevant particles. The general form of the
Coulomb interaction is V- ,,,mp=919-/T1,, Where q, and q, are the charges of
the two interacting particles and r,, is the distance between the particles.
Electrons have a charge —e, while nuclei are +Ze, where e=1.6x10-19C, so
we have:

Often we will use units for which i =m=e=1. These are known as atomic
units. In this system of units, we have:

H=Z{ %vz yZeiy }

alr > 1]



We will learn about three kinds of calculations that “solve” the electronic

Schrodinger equation in some sense: ab initio, semiempirical and density
functional theory.

In an ab initio calculation, the Schrodinger equation is solved using the
Hamiltonian given previously, by using basis functions to represent the
wavefunction. All terms in the energy expression are calculated
rigorously.

In a semiempirical calculation, the procedure is the same, but the energy
expression is greatly simplified by letting some terms be expressed in
terms of empirical expressions rather than calculated.

In a density functional theory calculation, the energy of the electrons is
reexpessed in terms of the electron density rather than the wavefunction,
and the density is obtained by solving a Schrodinger-like equation for
each electron that includes for interactions with the other electrons.



ADb initio calculations

To solve the Schrodinger equation, we write the many-electron wavefunction in
an approximate way, as a product of wavefunctions for each electron. The
wavefunctions for the individual electrons are called molecular orbitals, so if we
write the total wavefunction as a product of orbitals, this means that each
electron “does its own thing”, seeing only the average repulsion due to the other
electrons. This theory is called Hartree-Fock theory.

We have to obey the Pauli principle, so the product of orbitals needs to be made
antisymmetric with respect to interchange of electrons. To achieve this, we use
a Slater determinant (see below), as this is a mathematical device that permutes
the electrons among the orbitals with appropriate signs so that the wavefunction
is antisymmetric with respect to exchange of any two electrons. The resulting
theory can be developed with the restriction than the up and down-spin orbitals
be the same (restricted Hartree-Fock) or without this restriction (unrestricted

HF). oD, &, (DB, oMo, ¢, (DB,
¢1 (2)(12 ¢1 (2)[32 e

1
AN

¢1 (N)OLN ¢1 (N)BN ...



Determining the orbitals

If we assume that the wavefunction W is a Slater determinant, then the best
possible orbitals in that determinant are obtained by solving the Hartree-
Fock equations: n

f b =&

where f is called the Fock operator, @ is the orbital and ¢ is the orbital
energy. These equations are a lot like Schrodinger equations for each
electron, and the “Hamiltonian” is sort of like a Hamiltonian for each
electron. Thus we have:

A 1 Z,

fo=——v2-322 1323,k -K, (k)

2 a "ka j

where the first term describes kinetic energy, the second the attraction to
the nuclear, and the remaining two describe Coulomb and Exchange
interactions.



LCAO-MO method

To solve the HF equations, we expand each molecular orbital in
terms of a linear combination of atomic orbitals. For example, for the
H,* molecule, the ground state orbital is expressed as a sum of 1s
orbitals on each atom, i.e., ¢=c,1s_+c,1s,, where the “a” and “b” labels
refer to the two nuclei, and c, and c, are coefficients for each orbital that

we would optimize to give the best possible energy. More generally, we

would write:
¢k = chvbv
V

where “b,” stands for the vth atomic orbital basis function and c,, are
coefficients that determine the contribution of the vth basis function to
the kth molecular orbital. We will talk about basis functions later, but for
now we note that these would be 1s, 2p, 3d and other orbitals that are
centered on the atoms.

The coefficients c,, are optimized to give the best possible
solution. Using variational theory, one can show that this optimization
process is the one that gives the lowest molecular orbital energies ¢,.



Secular equation

We won’t go through the details, but variational theory leads
to the following equation (known as the secular equation) to determine
the molecular orbital energies ¢:

‘f—gﬂzo

This equation is called the secular equation, and it says that the
determinant of the difference between two matrices f and €s must
equal zero. The f matrix is obtained from the Fock operator:

bv>

while the s matrix involves the overlaps of the atomic orbital basis

functions: S/N _ <bﬂ ‘b\,>

A

f




Solving the Hartree-Fock equations and obtaining
molecular properties

The secular equation is used to determine
the orbital coefficients c,,, and therefore the molecular
orbitals. In Hartree-Fock theory, this is only the first
step of an iteration procedure, as the Coulomb and
Exchange terms in the Fock operator depend on the
orbitals. To continue, one uses the newly obtained
orbitals to construct a new Fock operator, then solves
the HF equations to generate energies € and
additional estimates of the orbitals. After iterating this
process, one eventually obtains orbitals that are
invariant to further iteration. Once this is done, the
total energy E_, is calculated.

Much of the technology for HF calculations
(and much more) was developed by John Pople, who
used to be a professor at Northwestern. Pople
received the Nobel Prize for this work in 1998.




Molecular Orbitals and Hartree-Fock Energies

As an example of the application of HF theory, the next two slides
show the molecular orbitals of the water molecule. This molecule has 10
electrons, so there are 5 occupied molecular orbitals in the ground state.
The first slide (Table 1) shows that these five orbitals have energies that
vary from -20.541 to -0.50066 hartrees (1 hartree = 27.211 eV = 627.51
kcal/mol). The matrix in this slide gives the orbital coefficients c,,, showing
how each orbital is decomposed into atomic orbitals on each atom.

The second slide (Figure 1) shows pictures of the orbitals. This
indicates that the orbital with energy -20.541 (labeled “17) is primarily
localized on the oxygen atom, and it has no nodal surfaces (surfaces where
the wavefunction goes to zero). We can consider that this orbital is a 1s
function associated with the oxygen atom. Orbital “2” is mostly oxygen 2s,
while orbitals 3 and 4 describe bonding between the O and H’s. Orbital 5,
the highest occupied molecular orbital (HOMO) is mostly a lone pair
associated with an oxygen 2p that is perpendicular to the plane of the
molecule.



Table 1

ORBITAL EMERGIES AND OREITAL COEFFICIENTS FOR THE LOWEST SEVEN
HARTREE-FOCK OREITALS IN WATER. EMERGIES ARE IN HARTREES, AND A ELAME CELL INDICATES
THAT THE CORRESPONDING COEFFICIENT 15 ZERO.

MO l 2 3 4 5 i 7
Energy: —20.541 —1.3492 - 71721 — 57287 — 30066 15259 21857
Atom Function
H, 5 —.00021 09656 15126 — 08748 —.03413 — 02364
H, 5 — 00008 8131 21224 —. 14604 A2 13008
H, 5 — 00010 — 00267 05449 —.02727 — 84441 —1.58014
H, Py 00007 — 02386 — 01870 02973 — 00513 — D0RES
H, . 03154
H, P, L0001 — 01441 —.025a7 — 00956 L0381 — 00819
O 5 —.55143 —.1133a — 03815 — 03350
O ¥ — 47168 —. 18036 — 06487 — 05463
O P, 22740 12024
O . 29169
O i — 00178 L3804 — 255687 07159
O 5 — 00557 53789 19649 10269
O P, JA4BRO 12747
8] P, 43668
O i 00062 06315 — . ATR15 11394
O 5 00046 ATIRO A3491 269
O Py 21181 A9547
O P, AB589
O P — 00009 02078 — 3399 19994
O i 00002 L0276 —.01699 L0456
O dy_ ooo12 Los04 — 00506 00367
O d,,

O i .. 02933 0553
O i . 01714

H, s —.00021 09656 —. 15124 — 08748 — 03413 02364
H, ¥ — 00008 8131 —.21224 —. 14604 OAR32 — 13008
H, K —.00010 — 00267 — 05449 - 02727 — 84441 |.58014
H; Py —.00007 02386 — 01870 — 02973 00513 — J08RS
H, e, 03154

H, P, 00001 — 01441 02567 — 00956 00381 L0819




Figure 1: Molecular orbitals for H,O




Atomic Orbital Basis Functions

To solve the Hartree-Fock equations, the orbitals ® are expanded in a
basis set of atomic basis functions. Instead of using hydrogen atom functions for
this expansion, the codes commonly use simpler functions. Long ago, Slater
developed orbitals (known as STO’s, or Slater type orbitals) that have the form:

b=Ae“r"'Y, (0,9)

These are like hydrogen atom functions, but with a simplified dependence on the
radial coordinate r that consists of an exponential times a power in r. Although the
Slater orbitals are quite effective, integrals involving the Fock operator are difficult.
An alternative that circumvents this are Gaussian functions of the radial coordinate
multiplied by spherical harmonics for the angles around each atom:

g=xy"z°e ™Y, (6,9)
Individual gaussians don'’t look like hydrogen atom orbitals, but this can be fixed by
summing many gaussians:
bﬂ - Z kup 95
P

This gives us basis functions like STO-3G in which three gaussians are summed to
give functions that look a lot like the hydrogen atom orbitals. The more gaussians
the better, so STO-6G (i.e., adding 6 gaussian functions) is an improvement over

STO-3G.



Additional types of Gaussian-orbital basis functions
Split Valence Basis

To improve accuracy, it is helpful to use multiple atomic basis functions for
each electron shell. Thus 6-31G is a split-valence basis in which there are
two independent basis functions for each valence electron.

Polarization Functions

Additional can be achieved with the use of polarization functions, which are
functions with one unit of angular momentum higher than would normally be
found for the valence electrons. These functions allow the orbitals to distort
as a result of bond formation. A common basis function that includes
polarization functions is called 6-31G**.

Diffuse Functions

For some problems it is important to include Gaussians with small
exponents to describe the “tail” of the wavefunction. An example of a
commonly used basis function in this category is 6-31+G.



Beyond Hartree-Fock:

The Hartree-Fock equations are Schrodinger-like equations but they apply to
one electron that interacts with the average potential due to all the other
electrons. The Fock operator contains the kinetic energy of this electron, the
attractive Coulomb interaction with the nuclei, the average repulsion with the
other electrons and an attractive interaction with the other electrons that
arises from the Pauli principle (the exchange interaction).

What is left out in HF theory is correlation between the electrons. There are
many approaches for adding this back in, of which the most commonly used
is called MP2 (second order Moller-Plesset) theory. Even better theories are
coupled cluster theory and multireference self consistent field theory. By
systematically increasing the sophistication of these methods, it is possible to
approach the exact solution to the Schrodinger equation. This is a key
advantage of ab initio methods that is not available with other theories.
However ab initio methods beyond MP2 are generally not feasible, so other
methods, such as density functional theory, are more popular.



Semiempirical Molecular Orbital Theory

In semiempirical methods (mostly invented by John Pople), one uses a
Slater determinant of orbitals as before, and this generates a secular
equation containing overlap and Fock matrices, however the elements
in these matrices are approximated in semiempirical methods ,often
replacing hard integrals with empirical functions.

There are many kinds of semiempirical methods:

(a) Huckel theory: appropriate to the 11 electrons in an aromatic
hydrocarbon.

(b) Extended Huckel theory: Similar to Huckel, but all electrons are
described.

(c) NDO Methods: CNDO and INDO: These methods attempt to mimic
Hartree-Fock calculations, but integrals involving Coulomb and
Exchange are mostly approximated.

(d) AM1, PM3 are similar to INDO, but integrals are parametrized to match
experiment.



Huckel Theory

In Huckel theory, we assume that the o bonding framework is frozen, and only
1 bonding is of interest. The wavefunction is expanded in terms of a linear
combination of p-11 orbitals on all the C, N, O atoms:

Hy = Ey V= Z Cokn
n
The secular equation (say for a basis set of two orbitals) has the form.
H11 -E H12 o ESz
H21 o E821 sz -E

In Huckel-Theory we assume that the overlaps S, are zero unless n=m, in
which case S is unity.

o, forn=m
H, ., =1B,, foratomnadjacent toatomm

0 otherwise

where a, and B, are parameters of the model.



Example of application of Huckel: ethylene H,C=CH,
Since there are two p-11 electrons. the secular equation becomes:

ao—-E P
=0
B a-E
The energy levels are:
a — B
o — B cr< >{r
E = Figure 12.2 Hiickel energy
o+ B a + B levels for ethylene.

Applying the aufbau principle, we would put the two p-pi electrons in
the lowest energy level, so that the total energy is:

Total energy = 2a+2[3

and the lowest excitation energy is +2|3|. Comparison with experiment
can be done by assigning values to a and f3.



Extended Huckel

In this approach, one uses all the valence orbitals on the
atoms, and then replaces integrals by:

o, forn=m

Hnm
KS,.

where S, are the calculated overlap integrals between orbitals n
and m and K is a parameter.

Semiempirical methods avoid the calculation of expensive
integrals, and as a result the computational effort is much less
than either HF or DFT. However accuracy is less too.



NDO Methods: A more advanced set of semiempirical theories are
called NDO methods, where NDO stands for neglect of differential
overlap.

1
r

(1o ) = <b,, (Db, (2)|=—{b, (Db, <2>>

12

Pople’s most commonly used NDO methods are called CNDO and
INDO:

a. CNDO (complete neglect of differential overlap): This is a similar
method to extended Huckel, but with two electron integrals negected
when p#v and o#A. The nonzero integrals were chosen to reproduce
the results of accurate HF calculations.

b. INDO (intermediate neglect of differential overlap): Here we include
exchange between electrons on the same atom.

In the 1960’s and thereafter, Michael Dewar converted INDO into AM1
and PM3, wherein the parameters were redefined to match
experimental data.



Density functional theory

Density functional theory (DFT) is another way to do electronic
structure calculations that looks and acts a lot like HF theory, but in the end
produces higher quality results with the same or less effort. The equations
being solved (the Kohn-Sham equations) have the same form as the HF
equations but the Fock operator is different, with effects due to electron
correlation directly included.

The starting part of this theory is the Hohenberg-Kohn theorem,
which states that the electronic energy E of any molecule can always be
expressed as a functional of the electron density p (i.e., not requiring the
wavefunction W). This energy has the form:

E=T+V

nucl

+Vrep +E_

where here we have generalized our earlier Hartree-Fock expression to
include for the exchange and correlation energy E, ..



To show how this works, here are expressions for the electron-nuclear
attraction and the electron-electron repulsion in terms of the density p

Z,p(
Vnucl = _Zj O‘r'lo( )dz-l

v, = [ g,
2 r

12

The electron density can be expressed in terms of the occupied
molecular orbitals using

p= 2,

1(occupied)

2

o

However in H-K theory, one doesn’t need to have wavefunctions, as
only the density is needed.



Although it was easy to express the Coulomb attractive and repulsive
terms as functionals of the density, however the kinetic energy is a
challenge. The exact expression is:

1= _%Z J. ¢,V ¢,dt

The exact expression for T in terms of p is not known, however a rough
approximation is given by the local density approximation (LDA):

3
T=_"(372)%? 53d ¢
10( ) jp

Better expressions are known, but the LDA is good enough to get

started.

The last part of the energy expression is the exchange-
correlation energy. Again there is no known exact expression, but a
local density approximation is:

1/5
Exc :_g(ij (Z-‘-p(l)4/3dT1

S\ 71

where a is 1 (rigorously) but is usually allowed to vary to improve the
quality of the results.



Kohn-Sham Theory

The theory to this point only requires the density matrix. However the
absence of an exact expression for the kinetic energy is a serious problem.
To circumvent this, we go back to a wave-function based theory for the
kinetic energy but stay with density functional expressions for everything
else. This leads to a Hartree-Fock-like equation for the orbitals as follows:

Fop=¢€¢

where the Kohn-Sham operator is:
| Q- Z,
F() = _Evl =¥ =243 3 (D) +V,
a r-la j
B oE., .
op

p:ZM)i

XC

2




Gradient Corrected DFT:;

The theory defined to this point is called LDA, local density functional
approximation. This theory is not adequate for most applications, but it is
possible to improve it by adding terms to the exchange-correlation
functional that depend on gradients of the electron density.

The most commonly used expression is called B3LYP, developed in
1993. This acronym stands for the names of the people who contributed
important parts to the energy expression, namely Becke, who developed
an expression for the exchange energy, and Lee-Yang-Parr, who
developed an expression for the correlation energy. In B3LYP, terms in
the exchange and correlation energy expressions were combined using
three adjustable parameters (hence the “3") that were optimized so as to
give accurate heats of formation for a large number of molecules. Thus
B3LYP has empirical components to it (unlike HF), and in many respects
it is no accident that it is more accurate.



Summary of Electronic Structure Methods:
Hartree-Fock Theory: ROHF, UHF

Beyond HF (there is no “beyond” for DFT):

‘MP2, MP4 — 2nd and 4t order perturbation theory (starting with HF)
*CCSD - Coupled Cluster singles and doubles (starting with HF)
*MCSCF, CASSCF — Multireference SCF, Complete Active Space SCF

Semiempirical Theory
*Huckel

*Extended Huckel
*CNDO, INDO

‘PM1, AM1

Density Functional Theory
LDA
*B3LYP



Properties that can be obtained from Electronic Structure Calculations

So far we have emphasized the calculation of the electronic energy and
molecular orbitals. However there are many other properties that can be
determined once we have the wavefunction in hand. Here is a brief
summary.

1. Potential energy surface (V,=E_*+V,,):

Dissoc Energy = V,(Q;™)-V,(Q;™)

Note: Need to add in vibrational zero point energy to determine AE(T=0), and need to
calculate partition functions to get AE(T). Additional work provides other
thermodynamics functions.

2. Wavefunction and orbitals: used to determine electron density
®,(a.; Q) W=10, 0,0, ..

3. Electrostatic Moments (dipole moment, etc) and electrostatic potential

Q = charge
OE 4 OEq

= = = — ‘“I"Zel’ I; \P = —
I <QH%GW%> - O = ¢ h il ') P

n- n-q-n
V :Q+ 5 q3
R

-I- ‘e
elst R R



4. Gradients, Hessians of the potential energy surface

Gradients:

Hessians:

Vib frequencies:

H nnv 2

oV,
oQ,

oV :
— — = () at stationary pts

n

2
= % =H_.
0Q,0Q ..

=0

MMy




5. Polarizabilities
o0*V

Hyperpolarizabilities
oV,
OF,0F F,

Bijh =

6. Magnetic moments, chemical shifts, hyperfine couplings



Effective Charges
There are no unique charges that can be attached to each atom.
However there are several definitions that yield useful results in some cases.

Mulliken charges: Lowdin charges:
1.Atomic charges bond orders b, =) (S"%).b,

chv \% an iu 1v q, =
H .

2.AIM (Bader) charges: partition the molecule in atoms using the topology of
the electron density

3.RESP (restrained electrostatic potential) charges
a. atom centered
b. bond midpoints
c. lone pairs

Calculate E_, at several gy and minimize.

> Constraint:
z (Vn (dn)— Vi (qn))

% Q=).Q,

Q
Visp = Z -
'tesSR —UN —
S1 S q ‘ “ - Z QSR




Results from electronic structure calculations: potential energy

curves, equilibrium geometries, dissociation energies of H,
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TABLE 14.1 ECQUILIBRIUM ENERGIES, GEOMETRIES,
AND VIERATIOMAL FREQUENCIES FOR H;

Method Energy R_(A) o, (em™!)
AM1 0.6766 4.342
HF/6-31G —1.12683 0.7301 4.644
MP2/6-31G —1.14414 0.7325 4.534
MP2/6-311G(p) —1.1a027 0.7384 4,533
MP4/6-31G —1. 15006 0.7443 4.412
B3LYP/6-31G —1.17548 0.7428 4.453
CCD/6-31G —1.15163 0.7454 4.384
CCD/cc—pVTZ —1.17220 0.7420 4,423
Experiment —1.174474 0.7416 4.305
Figure 14.1 Potential-

energy curves for H,.



TABLE 14.2 ENERGY, STRUCTURE AND VIBRATIONAL FREQUENCIES OF H,0

Method Energy {E“) R(A) # (deg) o (um_') (i fcm") s {um_')
AMI 0.9612 103.6 3.505 1.884 3.584
HF/STO-3G —74.96590 (0.9895 100.0 4.139 2170 4390
HF/6-31G —75.98536 (0.9496 111.6 3.988 1,737 4.146
MP2/6-31G —76.11318 0.9748 109.3 3.654 1.663 3.830)
MP2/6-31G(d.p) —76.19685 0.9687 104.0 3.775 1.735 3.916
MP4/6-31G —76.20725 0.9704 103.9 3.739 1,742 3,870
MP4/6-311G(d,p) —76.27634 (0.9590 102.4 3879 1.680 3.977
B3LYP/6-31G —76.40895 (.9683 103.6 3.730 1.713 3.851
Experiment — 7648038 0.9752° 104, 5° 3.833P 1.649" 3.943P

“Energy is based on an analysis presented by A. Lichow. J. B. Anderson, and D. Feller, J. Chem. Phys.

106, 7706 (1997).

" Experimental harmonic frequencies are based on the force field of A. R. Hoy. L. M. Mills. and G. Strey,

Mol Phys. 24,1265 (1972



TABLE 14.3 VIERATIONAL FREQUENCIES OF PYRIDINE?®

HF/
HF/ HF/ 6-311++G B3LYP/ B3LYP/

Symmetry 6-31G 6-311++G (scaled) 631G 6-311++G Experiment
A2 450 444 400 391 386 380
B1 451 478 430 433 430 406
Al 680 674 607 629 629 603
B2 737 731 658 682 631 034
B1 807 840 756 735 732 703
B1 856 796 716 774 765 147
A2 1.022 1.008 907 918 915 8584
B1 1.096 1,078 970 974 969 941
Al 1.094 1,077 969 1.003 996 991
A2 1.160 1,135 1,022 1,018 1.010 980
B1 1.183 1,153 1.038 1,042 1.029 1,007
Al 1.135 1,125 1,013 1,059 1.049 1.030
B2 1.175 1,156 1,040 1,093 1.079 1.06Y
Al 1.192 1178 1.060 1,109 1.099 1.069
B2 1.253 1,223 1,101 1,212 1.199 1.146
Al 1.354 1,339 1,205 1,262 1.249 1.217
B2 1.336 1,317 1,185 1,300 1.271 1,227
B2 1,522 1,507 1,356 1,416 1.405 1.355
32 1.614 1,594 1,435 1,492 1.478 1.457
Al 1.659 1,634 1.475 1,526 1,512 1.483
B2 1.776 1,752 1,577 1,625 1.604 1.574
Al 1.785 1,759 1,583 1.630 1.610 1.581
Al 3.369 3,332 2,999 3,198 3.163 3,025
32 3,382 3.345 3.011 3,200 3.168 3,034
Al 3.391 3,353 3,018 3,210 3.178 3,057
B2 3.402 3,360 3,029 3,222 3.1858 3.079
Al 3.412 3,375 3,038 3,233 3.199 3,070

*HF/6-311++G and experimental results adapted from W.-H. Yang and G. C. Schatz, J. Chem. Phys.
3831 (1992).



H+H, > H-H-H - H, + H

TABLE 14.4 ENERGY, BARRIER HEIGHT, AND GEOMETRY OF H; SADDLE POINT

Method Energy {E;E) Barrier Height IfE“:l H-H distance (A)
AMI1 —(0.00489 0.8141
HF/6-311G —1.59650 0.02857 0.9341
MP2/6-311G —1.61990 0.02579 0.9259
MP4/6-311G —1.62864 0.02384 0.9324
B3LYP/6-211G —1.67193 (0.00686 0.9293
CCSD(T)/6-311G —1.63166 0.02165 0.9431
CCSD(T)/Aug-cc-pVTZ —1.65689 0.01557 0.9317
Exact® —1.65916 (0.01531 0.9298

“D. L. Diedrich and J. B. Anderson. J. Chem. Phys. 100, 8089 (1994).



TABLE 14.5 VERTICAL EXCITATION ENERGIES (IN eV} ASSOCIATED
WITH THE LOWEST EXCITED STATES OF THE WATER MOLECULE

State CIS/6-311G(d) Other theory Experimental
'B, 8.74 7.52% 7.55", 7.60¢ 7429, 7.49¢ 7.70
' A, 10.55 9.1-10.28

LA, 11.30

Y(CEPA). V. Stacmmler and A. Palma. Chem. Phys. 98,63 (1983).
P(CCSD). A. Balkava and R. J. Bartlett, J. Chem. Phys. 99,7907 (1993).
“(CASSCF+SDCI), G. C. Schatz, A. Papaioannou. L. A. Pederson,

L. B. Harding, T. Hollebeek. T.-5. Ho and H. Rabitz. J. Chem. Phys. 2340
(1997).

YH.T. Wang, W. S. Felps. and S. P. McGlynn, J. Chem. Phys. 67,2614 (1977).
“K. Watanabe and A. S Jursa, . Chem. Phys. 41.1630 (1964).

"M. L. Doublet. G. J. Kroes. E. J. Baerends. and A. Rosa.J. Chem. Phys. 103,
2538 (1995).

#This is the spectral range (including zero-point energy corrections)
assoclated with the transition. See E. Segev and M. Shapiro. . Chem. Phys.
77.5604 (1982).



TABLE 14.6 VERTICAL EXCITATION ENERGIES (IN eV) ASSOCIATED WITH
THE LOWEST EXCITED STATES OF PYRIDINE

State CIS/6-311G(d) ZINDO® HAMP Experiment®
'B, 5.83 437 4.9 4.59

'B, 6.45 4.78 4.9 4.99

'A, 7.15 5.36

LA, 6.74 5.72 6.2 6.38

“W.-H. Yang and G. C. Schatz. J. Chem. Phys. 97,3831 (1992).

"E. Lindholm and A. Asbrink. Molecular Orbitals and Their Energies Studies
by the Semiempirical HAM Method (Springer, Berlin, 1955).

“A. Bolovinos, P. Tsekeris, I. Philis, E. Pantos, and G. Audritsopoulos, J. Mol.
Spectrosc. 103,240 (1984).



TABLE 14.7 STRUCTURES AND ENERGIES ASSOCIATED WITH (HF};

Method Energy ry vy Ryy fy oy D,
MP2/6-31G —200.23664 (.9501 .9516 2.7112 14.3 73.8 0.0127
MP2/large® 0.9264 0.9233 2.747 6.0 67.6 0.0072
CCSD(T)/large” 0.923 0.921 2.74 7 70 0.0075
Experiment* (.923 0.920 2.736 7 68 0.00730

+0.0001

“The basis set is a variant on aug-cc-pVTZ, as reported by W. Klopper. M. Quack. and M. A. Suhm,
Chem. Phys. Lett. 261,35 (1996).

", L. Collins. K. Morihashi. Y. Yamaguchi. and H. F. Schaefer, I11.J. Chem. Phys. 103, 6051 (1995).
“B. . Howard. T. R. Dvke. and W. Klemperer.J. Chem. Phys. 81,5417 (1984),

Figure 14.3 Structure of the
HF dimer. Note that this
structure is planar.




Solvation effects

Often one wants to learn about the properties of two interacting
molecules, or a molecule plus a solvent. Including the other
molecule or the solvent explicitly can be very time consuming, so
an alternative is to do quantum mechanics on just the molecule,
and then use classical electrostatics to describe the interaction
with another molecule or with a solvent.

To do this it is convenient to describe the molecule in terms of
effective charges on each atom, so that an electrostatic potential
can be generated. Once the charges are known, the interaction
with solvent can be described by solving the Poisson-Boltzmann
equation (basic equation of electrostatics) to determine the
electrostatic potential and from this the solvation energy.



Materials Fracture and Adhesion
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Using Electronic Structure Theory to Model
Mechanical Properties of Nanomaterials

Nanotubes, rods and other nanomaterials provide the
simplest systems for which mechanical properties
(stress/strain behavior) can be measured.

*These materials provide an excellent opportunity to learn
about the influence of defects and chemical
functionalization.

*They are sometimes amenable to study using electronic
structure theory methods, thus providing a platform for
connecting fundamental theory with experiment.



Electronic Structure Theory will be used to:

*Establish shape of stress/strain curves, and their
sensitivity to nanotube structure.

Interpret experiments, establish theoretical limits.

Examine the role of defects and chemical functionalization
on fracture behavior.

Integrate single nanotube results with bulk results.



Using electronic structure theory to describe
fracture in nanosystems is a big challenge

*Minimum size systems to model structure typically
contain >100 atoms, and real systems are usually much
larger.

*The quality of theory needs to be carefully considered:
bonds are being broken, open-shell effects can be
important, both finite cluster and periodic boundary
conditions need to be considered.

Finite temperature effects might be important, but it is
iImpossible to do useful MD calculations with most
electronic structure models. Multiple pathways to
fracture are possible.



Systems considered

Carbon Nanotubes (defects, chemical functionalization)

Ultrananocrystalline Diamond Films (grain boundary
fracture, doping effects)




Electronic structure methods

DFT (PBE): SIESTA (Spanish Initiative for Electronic
Simulations with Thousands of Atoms): a self-consistent
DFT program. Highest accuracy of the methods we have
studied, but computational effort is a serious problem.

PM3: Semiempirical method which is reasonably close to
DFT for carbon-based nanostructures. Largely restricted
to finite cluster calculations.

MSINDQO: Semiempirical method that can be used both
for clusters and for periodic boundary conditions. For
carbon-based nanostructures it is less accurate than

PM3.

SCC-DFTB (density functional-based tight-binding with
self-consistent charges): an approximate DFT method.



Other methods

For systems with carbon and hydrogens, can use
Tersoff-Brenner (reactive bond-order) potential for
MM calculations.

Mixed MM/CM studies (and ultimately QM/MM/CM)
to extend from a few atoms to a continuum
description.



Carbon nanotube fracture

Carbon nanotubes are likely the strongest known materials

Their superior mechanical properties (resisting more than 1 order of magnitude larger
tensile loads than reinforced steel) and their lightweight nature (six times less
than steel) make them perfect candidates for reinforcement materials in nanocomposites




Fracture of Carbon Nanotubes
MM calculations with empirical force fields

T. Belytschko, S. P. Xiao, G. C. Schatz and R. Ruoff, Phys. Rev. B 65, 235430/1-/8 (2002).
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Carbon nanotube fracture

Determination of stress vs strain curve for [5,5] tube
with Stone-Wales defect (170 carbon atoms)

strain= Al/ |,
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Strain = 0.26 (just after fracture)

T\
\//
T\
N/

¢
!03._ |

R
N

A\

0.25

0.2

0.15
strain

0.1

0.05



Stress (GPa)
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Stress-Strain Curves: undefected tubes
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One and Two-Atom Vacancies

[10,0] 2 at. sym. [10,0] 2 at. asym.



Stress (GPa)

Fracture for one/two atom
vacancies
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Fracture for Large Hole Defects

Hole Defect

Slit Defect

Fracture Stress (GPa)

MM results
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Ultrananocrystalline (UNCD) Diamond Films

&

\

Cluster of grains

D. M. Gruen et al, Appl. Phys. Lett. 64 (1994) 1502: J. Vac. Sci.
Tech. A13 (1995) 1628.

UNCD MEMS



UNCD Structural Modeling >13 grai.n boundary. structure
67.4° twist perpendicular to 100 plane

208 atoms

P. Zapol, M. Sternberg, L. A. Curtiss, T.
Frauenheim, D. M. Gruen, Phys. Rev. B 65,
045403 (2002)

DF-TB (tight binding) studies of diamond film
growth, and of grain boundary structures.
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FIG. 1. Side view of the periodic cell for an optimized diamond
%13 grain boundary. Two grain boundaries are shown. Black atoms
are three-coordinated and gray atoms are four-coordinated. Atoms
in the first layers of the interfaces are shown as larger spheres.
Bonds extending across the cell boundary are shown as half bonds.




UNCD grain boundaries

no GB

two GBs



UNCD fracture: PBE
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'MSINDO' —+—
PBE/MSINDO’ - -

UNCD: Results -

* Energy/stress versus strain
curves.

* Results produced using
MSINDO (+), SIESTAto
calculate the energy of the

Energy (eV/atom)

MSINDO structures (), and '— 07

SIESTA using the PBE S el
GGA functional (m).
. PBE//MSINDO is much

better than MSINDO at

capturing mechanical S 1o e
properties but predicts a 5 e
qualitatively different ot
fracture mechanism. N
A
J. T. Paci et al., Chem. Phys. Lett. 414, 351 (2005). . !; | l |

Strain



Summary of mechanical properties

Cluster E (TPa) €r ar (GPa)
Single-crystal (MSINDO) 1.56 0.34 277
Single-crystal (PBE//MSINDO) 1.01 0.37 219
Single-crystal (PZ) 1.09 0.36 239
Single-crystal (PBE) 1.09 0.35 233
UNCD (MSINDO) 1.53 0.14 163
UNCD (PBE//MSINDO) 0.955 0.16 116
UNCD (PBE) 1.05 0.13 100

E - the Young's modulus (stiffness).
& - failure strain.
o; - fracture stress.

PBE results are probably the most accurate.



Theoretical versus practical

strengths

Our E values of 1.09 and 1.05 TPa for single-crystal and
UNC diamond, respectively, agree well with the
corresponding experimental values of 1.05 and 0.95
TPa.

Experimentally measured fracture stress values for
single-crystal diamond and UNCD are o;~ 4 GPa and o;
~ 1-5 GPa, respectively. We are way-off here. What we
have left out is the effect of large (~100 nm) cracks.

Cracks lead to regions of stress concentration which
result in crack propagation and material failure.

The effect of defects on the fracture behavior of a brittle
material like diamond can be described using Griffith
theory.



Griffith theory

« Basic idea: when the strain energy released by fracture
Is larger than the energy required to create new surface
(the surface energy), a crack will propagate.

It can be shown that for a penny-shaped crack of
radius c, the Griffith fracture stress is

- RE) 1/2
= \2ci =)

where v is the fracture surface energy and v is the
Poisson ratio. For UNCD, we calculated y =2.6 J/m?Z.
For example, this means that for a crack with radius, c
=50 nm in a UNCD grain boundary, o; = 9.3 GPa.




Practical strength of UNCD

 Typical experimentally
observed defects have
radii, ¢ ~ 300 nm.

« According to the Griffith
equation, a crack with this
radius will result in o; =
3.8 GPa, a value within
the o; ~ 1-5 GPa UNCD
fracture stress range.

H. D. Espinosa et al., J. Appl. Phys.
94, 6076 (2003).



Computational modeling of bioadhesion

Fred Arnold, Linlin Zhao, George C. Schatz
In collaboration with Phil Messersmith

Mussel adhesive protein (MAP) i yo 7

| G____

contains an unusually high a
concentration of the DOPA
amino acid residue.

This is produced by hydroxylation of tyrosine (one of the standard
amino acids). Q 0

HoN——CH—C——OH
CH,

DOPA

OH

OH OH



Recently, Messersmith and coworkers have measured the
force needed to pull-off a single DOPA-containing molecule
from a TiO, surface. This corresponds to a 22 kcal/mol
binding energy. (Lee, Scherer, Messersmith, PNAS submitted)
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What is the mechanism of adhesion? Coordination
complex, hydrogen bonds, pi-stack interaction, or a
combination of these are all possible?



Proposed mechanisms for DOPA binding to TiO,

Catechol end of JJJJ
mPEG-DOPA
o’
00(0

S
‘68(\\6 ° ?
o NN
HO OH b © © ©
HO OH ”b’g oy
Ti 'IF 1! Ti edCo
N N N /770/@"r
Possible mechainsms of DOPA
binding to TiO:2 surfaces
0] @]

Messersmith, P.B. et al, Langmuir, 21, 640, | |
2005; Deming, T.J. Current Opinion in T‘\O/Ti\O/T‘\O/Ti
Chemical Biology, 3, 100, 1999



Cluster Models used to model the TiO2 surface

Cluster models used for TiO2 absorption site : S1, S2, D1, D2

S1(2) + catechol —C2(4), D1(2) + catechol—> C7(8) + H20

L]

Catechol-TiO2 complexes: C2, C4, C7, C8




Binding energy (kcal/mol) of catechol at TiO2 absorption
site and defect Ti=0O2 double bond site, results obtained
using GAMESS HF/6-31G*//B3LYP/6-31G*.

51—C2 52—C4 D1—-C7 D2—C8

RE/HF  -23.1 -249 -303 -30.6
RE/DFT -21.1 -204 -27.0 -274

Bidentate structure is favored over monodentate
structure, and binding energy is around 27 kcal/mol.



Further studies

» Calculate pull-off force to make
comparisons with Messersmith
measurements

« Compare DOPA, tyrosine and other
amino-acids

« Compare TiO,, SiO,, Au and other
surfaces to determine relative role of
different adhesion mechanisms



