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NEMS Characterization TechniqueNEMS Characterization Technique
-- Component Constitutive Behavior (Component Constitutive Behavior (CNTs/NWsCNTs/NWs))

-- ElectroElectro--Mechanical Characterization at the Device LevelMechanical Characterization at the Device Level
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Yu et al., Science (2000)

Marszalek et al., PNAS (2000)

Techniques for Testing NanostructuresTechniques for Testing Nanostructures
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Salvetat et al. 
PRL (1999)
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Haque and Saif, Exp. Mechanics (2002)
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Lack direct or simultaneous real time 
measurement of load, deformation and imaging of 
atomic defects. 
Imaging is required for both load measurement and 
atomic defects identification. However, the 
required magnifications are quite different.
Do not exhibit a single loading condition specially 
at large deformations.
Are not suitable for in-situ TEM (highest atomic 
resolution).
Cannot measure specimen electronic properties 
under a well-characterized loading condition.

LimitationsLimitations
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MEMSMEMS--based Material Testing Systembased Material Testing System

Thermal
Actuator

Zhu, Moldovan and Espinosa, 
Appl. Phys. Lett. 86, 013506 
(2005)

Displacement Control Force Control

Thin FilmsNWs/CNTs
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movable 
combs

stationary 
combs

overlap

width
gap

• Pairs of combs: 300/1200

• Folded beam length: 125 µm

• Folded beam width: 2.5 µm

• Folded beam height: 3.5 µm

F=Nε0V2h/d • Height (h): 2 µm

• Width (w): 2 µm

• Gap (d): 2 µm

• Overlap (o): 15 µm

• Length (l): 30 µm

Electrostatic (Comb Drive) Actuator Electrostatic (Comb Drive) Actuator –– Force ControlForce Control

wing

shuttle

arm

folded 
beam
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Thermal Actuator Thermal Actuator –– Displacement ControlDisplacement Control

Poly-Si Beam

Air
Si3N4

Si Substrate
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Cross Section A-A’(b)

V

Inclined beams

Motion u

Shuttle

(a)
A
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• Pair of inclined beams: 5/10

• Beam length: 300 µm

• Beam width: 8 µm

• Beam height: 3.5 µm

θ

Prorok, Zhu, Espinosa, Bazant & Yakobson, in Encyclopedia of Nanoscience and Nanotechnology
(2004), p. 555; Zhu, Corigliano & Espinosa, in press J. Micromech. Microeng., (2006)
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100 µm100 µm

Beam Angle Selection Beam Angle Selection -- 22

10o beam angle 30o beam angle

10 beam pairs 5 beam pairs
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Small KlS Large XLS

θα sin2 TEANFXKXK
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high load sensor resolution

large XA high temperature increase

To test a particular structure, KS and XS are given

KLS is an important design parameter

Lumped SystemLumped System ModelModel
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Thermal Actuator

KT KS
KL

F

XLXT

Governing Equations:
XS = XT - XL
KS XS = KL XL
KT XT = F – KS XS
F= NEAα∆T cosθ

Capacitive load sensor stiffness:

MWCNT specimen stiffness:

Thermal actuator stiffness:

For a MWCNT specimen (ls = 2 µm; F=1 µN, ε = 4%)
XT=157.3 nm, XS=93.5nm and XL=53.8nm

Zhu and Espinosa, PNAS, Vol. 102, 2005

Lumped Model Lumped Model –– CNT Example CNT Example 

Specimen
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• Pair of inclined beams: 5/10
• Beam length: 300 µm
• Beam width: 8 µm
• Beam height: 3.5 µm
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Thermal Actuator Thermal Actuator –– MultiphysicsMultiphysics SimulationSimulation

Temp uanchors

Heat sink beams

Actuation Voltage: 1V1V
In Vacuum

55oC 66nm

Zhu, Corigliano & Espinosa, in press J. Micromech. Microeng., (2006)
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Load SensorLoad Sensor
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Load Sensor and Signal ConditioningLoad Sensor and Signal Conditioning
Charge sensing method:
•

• Eliminates parasitic capacitances 

dVsense ∆∝∆

1 cm

Vref

Cf

 LPF

output
voltage

synchronous
demodulator

-
+

C1

C2

capacitive load sensor

Device Chip Sensing IC Chip

• Both chips on a custom-made PCB;

• Minimizes stray capacitance and electro-

magnetic interference.

Double chip Architecture
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Load Sensor Calibration Load Sensor Calibration -- 11
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Load Sensor Calibration Load Sensor Calibration -- 22
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Device ResolutionDevice Resolution

Capacitance change: 0.05 fF
Displacement: 1 nm
Load: 12 nN



Micro and Nanomechanics Lab
Department of Mechanical Engineering

Other ConfigurationsOther Configurations

200 µm

200 µm

Compression/
Buckling

Electronic 
measurement 
of load and 
elongation
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Load sensor Thermal 
actuator

Heat sink 
beams

Backside 
window

Displacement 
markers

In-situ TEM Devices: Nanostructure & Thin Film
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Fabrication Process of In-situ TEM Device



Micro and Nanomechanics Lab
Department of Mechanical Engineering

inin--situ SEM Experimentssitu SEM Experiments
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Nanoscale Polysilicon Film - 1
FIB machined
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Nanoscale Polysilicon Film - 2

Young’s modulus = 155±5 GPa

Fracture strength 0.72~1.42 GPa

Displacement Markers

Fracture surface

Zhu and Espinosa, PNAS, (2005)
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inin--situ SEM/TEM Experiments of situ SEM/TEM Experiments of CNTsCNTs
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In-situ TEM Setup

1

5 mm

10 mm

Φ = 3 mm Electric 
contacts

1.5 mm

TEM holder platform

Chip with MEMS 
devices

In collaboration with Prof. Ivan Petrov, Center for Microanalysis of Materials, UIUC

5 mm
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5 µm

A B

C D

FIB Cut

EBID Pt
nanoweld

Specimen Mounting on MEMS
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Experimental Data – CVD Grown MWCNTs
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•• EE--beam 1 and 2 tested in TEM operated at 200 kV (Telescopic failurbeam 1 and 2 tested in TEM operated at 200 kV (Telescopic failure)e)
• EE--beam 1 (beam 1 (nanoweldingnanowelding very close to shuttle edge, very close to shuttle edge, failure inside failure inside 

observation windowobservation window), E), E--beam 2 (beam 2 (nanoweldingnanowelding ~1.5 ~1.5 µµm from edge, m from edge, failure failure 
just outside observation windowjust outside observation window))

•• Ion Beam irradiation in FIB with gallium ions (entire crossIon Beam irradiation in FIB with gallium ions (entire cross--sectional failure)sectional failure)
•• Low irradiation sample tested in SEM operated at 3Low irradiation sample tested in SEM operated at 3--5 kV 5 kV 
(Telescopic failure inside observation window)(Telescopic failure inside observation window)

E=315 E=315 GPaGPa
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Constitutive Behavior and Failure Modes

Nano diffraction

Two Failure ModesTwo Failure Modes

CVD Grown CVD Grown MWCNTsMWCNTs
•• EE--beam 1 and 2 tested in TEM beam 1 and 2 tested in TEM 
operated at 200 kV (T)operated at 200 kV (T)

•• Ion Beam irradiation in FIB with Ion Beam irradiation in FIB with 
gallium ions (CS)gallium ions (CS)

•• Low irradiation sample tested Low irradiation sample tested 
in SEM operated at 5 kV (T)in SEM operated at 5 kV (T)

•• Young’s Modulus E=315 Young’s Modulus E=315 GPaGPa T: telescopic ; CS: entire cross-section

50 nm

50 nm

E=315 E=315 GPaGPa
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Telescopic Failure
a b 
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Load Transfer Mechanism- Inter-Shell Bridging

Vacancy or Interstitial threshold Vacancy or Interstitial threshold 
Energy is 86 Energy is 86 keVkeV

Telling et al., Nature Mat. (2003)

Kis et al., Nature Mat. (2004)

DFT prediction DFT prediction 
of C atom in a of C atom in a 
fourfold coordinated fourfold coordinated 
interstitialinterstitial

SWCNT bundles
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Discussion

Zhang et al., PRB, 71 (2005)

QMQM

MMMM--MTBMTB

ExperimentsExperiments
ArcArc--growngrown

rh

• CVD and arc grown MWCNTs exhibit the same E 
and comparable failure stresses.

• For the first time, in-situ TEM experiments reveal
two failure modes with increasing number of
failing shells as the irradiation dose and type is
varied. The lowest dose was obtained in
in-situ SEM experiments where single shell failure
was observed.

• Failure stress shows statistical behavior consistent
with brittle failure and volume scaling.

• Large number of missing atoms, holes with radii
of about 3-4 nm are required to explain the low
strengths experimentally measured.

• Models based on van der Waals inter-shell interac-
tions are insufficient to explain the multi-shell failure
observed experimentally. Additional QM studies of
mechanical and electronic states are needed.
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Before Straining

low mag. high mag.mid. mag.

In-situ TEM Testing of Carbon Nanotubes
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After Straining

Walls disappeared?
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High Resolution TEM
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EELS Spectrum

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

280 300 320 340 360

photon energy (eV)



Micro and Nanomechanics Lab
Department of Mechanical Engineering

Gold Nanowires

twin

nanotwin

20nm

[110]

• [110] growth direction
• Average diameter: 20±5 nm
• One grain through the thickness
• A large number of twins but no dislocations

20nm

[110]

[111]

HRTEM

In collaboration with Dr. Hsien-Hau Wang, Materials Division, Argonne National Lab

Dr. C. Li
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MD Simulations of NWs
[111] Nanowires
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(A and B) Tensile stress responses for [111] and [110] axially 
oriented wires (as seen in Figure 1A and 1B, respectively) with 
representative radii from 5nm to 17.5nm. (C) Tensile yield stress as a 
function of diameter for all examined sizes.  Both orientations show a 
drop in tensile yield stress with increasing diameter.
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Role of Surface Defects

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08 0.1 0.12

Deformation

C
ha

ng
e 

in
 E

ne
rg

y 
(e

V)
/A

to
m

2 3
0

2 2
3

E E
V

ε ξε∆
= +

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.02 0.04 0.06 0.08 0.1 0.12

Deformation

C
ha

ng
e 

in
 E

ne
rg

y 
(e

V)
/a

to
m σ1=4.07σy=7.35 GPa

Orientation <111>Orientation <111>
D=5 nmD=5 nm
Strain Rate = 5x10Strain Rate = 5x107 7 ss--11

Step is created by a ½ Step is created by a ½ 
<110> translation; perfect <110> translation; perfect 
dislocation shift.dislocation shift.
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http://clifton.mech.northwestern.edu/~espinosa/
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